Millipore Sigma Vibrant Logo
 

95753-55-2


213 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (213)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Systematic identification and characterization of long intergenic non-coding RNAs in fetal porcine skeletal muscle development. 25753296

    Long intergenic non-coding RNAs (lincRNAs) play important roles in many cellular processes. Here, we present the first systematic identification and characterization of lincRNAs in fetal porcine skeletal muscle. We obtained a total of 55.02 million 90-bp paired-end reads and assembled 54,550 transcripts using cufflinks. We developed a pipeline to identify 570 multi-exon lincRNAs by integrating a set of previous approaches. These putative porcine lincRNAs share many characteristics with mammalian lincRNAs, such as a relatively short length, small number of exons and low level of sequence conservation. We found that the porcine lincRNAs were preferentially located near genes mediating transcriptional regulation rather than those with developmental functions. We further experimentally analyzed the features of a conserved mouse lincRNA gene and found that isoforms 1 and 4 of this lincRNA were enriched in the cell nucleus and were associated with polycomb repressive complex 2 (PRC2). Our results provide a catalog of fetal porcine lincRNAs for further experimental investigation of the functions of these genes in the skeletal muscle developmental process.
    Document Type:
    Reference
    Product Catalog Number:
    17-701
    Product Catalog Name:
    EZ-Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Up-regulating CYP3A4 expression in C3A cells by transfection with a novel chimeric regulator of hPXR-p53-AD. 24788541

    Most hepatoma cell lines lack proper expression and induction of CYP3A4 enzyme, which limits their use for predicting drug metabolism and toxicity. Nuclear receptor pregnane X receptor (PXR) has been well recognized for its critical role in regulating expression of CYP3A4 gene. However, its physiological activity of binding to the particular site of promoter is significantly weakened in hepatic cell lines. To address this problem, we created "chimeric PXR" constructs by appending a strong activation domain (AD) from p53 subunit to either N- or C- termini of the human PXR (hPXR), that is, hPXR-p53 and p53-hPXR. C3A, a hepatoma cell line, was used as the cell model to test the regulation effect of chimeric hPXR over wild type (WT) hPXR on CYP3A4 expression at gene, protein, and metabolism levels, respectively. Compared with C3A cells transiently transfected with WT hPXR, the activity of CYP3A4.XREM.luc reporter gene in C3A cells transfected with hPXR-p53 or p53-hPXR increased 5- and 9-fold respectively, and the levels of CYP3A4 mRNA expression increased 3.5- and 2.6-fold, respectively. C3A cells stably transfected with hPXR-p53-AD exhibited an improved expression of CYP3A4 at both gene (2-fold) and protein (1.5-fold) levels compared to WT C3A cells. Testosterone, a CYP3A4-specific substrate, was used for detecting the metabolism activity of CYP3A4. No testosterone metabolite could be detected in microsomes from WT C3A cells and WT C3A cells-based array, while the formation of 6β-hydroxytestosterone metabolite in the transfected cells was 714 and 55 pmol/mg protein/min, respectively. In addition, all the above expression levels in the transfected cell models could be further induced with additional treatment of Rifampicin, a specific inducer for CYP3A4. In conclusion, our study established a proof-of-principle example that genetic modification with chimeric hPXR-p53-AD could improve CYP3A4 metabolism ability in hepatic cell line.
    Document Type:
    Reference
    Product Catalog Number:
    AB1254
    Product Catalog Name:
    Anti-Cytochrome P450 Enzyme CYP3A4 Antibody
  • Long noncoding RNA LINC00673 epigenetically suppresses KLF4 by interacting with EZH2 and DNMT1 in gastric cancer. 29221147

    Long non-coding RNAs (lncRNAs), a variety of transcripts without protein coding ability, have recently been reported to play vital roles in gastric cancer (GC) development and progression. However, the biological role of long non-coding RNA LINC00673 in GC is not fully known. In the study, we found that LINC00673 expression was dramatically higher in gastric cancer tissues compared with adjacent normal tissues, and positively associated with lymph node metastasis, distant metastasis and TNM stage in patients. Higher LINC00673 expression predicted poor disease-free survival (DFS) and overall survival (OS) in GC patients. By univariate and multivariate Cox analysis, the results confirmed that higher LINC00673 expression was an independent risk factor of prognosis in patients. Knockdown of endogenous LINC00673 significantly inhibited cell proliferation, colony formation number, cell migration and invasion in GC. Furthermore, knockdown of endogenous LINC00673 reduced the expression levels of PCNA, CyclinD1 and CDK2 in GC cells. RNA immunoprecipitation (RIP) and chromatin immunoprecipitation (ChIP) proved that LINC00673 suppressed KLF4 expression by interacting with EZH2 and DNMT1 in GC cells. Moreover, we confirmed that LINC00673 promoted cell proliferation and invasion by partly repressing KLF4 expression in GC. Taken together, these results indicated that LINC00673 may be a prognostic biomarker and therapeutic target for GC patients.
    Document Type:
    Reference
    Product Catalog Number:
    17-700
    Product Catalog Name:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • The vitamin D receptor-mediated activation of phosphatidylinositol 3-kinase (PI3Kalpha) plays a role in the 1alpha,25-dihydroxyvitamin D3-stimulated increase in steroid s ... 17879954

    In this article we show that 1alpha,25-dihydroxyvitamin D(3) (1alpha,25(OH)(2)D(3)) stimulates the activity of the class IA phosphatidylinositol 3-kinase PI3Kalpha and its downstream target Akt in HL60, U937 and THP-1 myeloid leukaemic cell lines. Furthermore, we show that the classical nuclear vitamin D receptor (VDR(nuc)) is involved in this activation of the PI3K/Akt signalling in these cell lines. We have previously shown that the activity of steroid sulphatase is stimulated in HL60, U937 and THP-1 myeloid leukaemic cell lines by 1alpha,25(OH)(2)D(3) (Hughes et al., [2001] Biochem J 355:361-371; Hughes et al., [2005] J Cell Biochem 94:1175-1189; Hughes and Brown [2006] J Cell Biochem 98:590-617). In this article we show that the 1alpha,25(OH)(2)D(3)-stimulated increase in signalling via the PI3K/Akt pathway plays a role in the increase in steroid sulphatase activity in the HL60 U937 and THP-1 cell lines. We used a variety of pharmacological and biochemical approaches to show that activation of PI3Kalpha mediates the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells. We also show that the PI3K/Akt dependent activation of NF-kappaB plays a role in the 1alpha,25(OH)(2)D(3)-stimulated increase in steroid sulphatase activity in myeloid leukaemic cells.
    Document Type:
    Reference
    Product Catalog Number:
    LP4
    Product Catalog Name:
    Lipoprotein Deficient Serum, human, 100 mg
  • Arachidonic acid-dependent gene regulation during preadipocyte differentiation controls adipocyte potential. 25325755

    Arachidonic acid (AA) is a major PUFA that has been implicated in the regulation of adipogenesis. We examined the effect of a short exposure to AA at different stages of 3T3-L1 adipocyte differentiation. AA caused the upregulation of fatty acid binding protein 4 (FABP4/aP2) following 24 h of differentiation. This was mediated by the prostaglandin F(2α) (PGF(2α)), as inhibition of cyclooxygenases or PGF(2α) receptor signaling counteracted the AA-mediated aP2 induction. In addition, calcium, protein kinase C, and ERK are all key elements of the pathway through which AA induces the expression of aP2. We also show that treatment with AA during the first 24 h of differentiation upregulates the expression of the transcription factor Fos-related antigen 1 (Fra-1) via the same pathway. Finally, treatment with AA for 24 h at the beginning of the adipocyte differentiation is sufficient to inhibit the late stages of adipogenesis through a Fra-1-dependent pathway, as Fra-1 knockdown rescued adipogenesis. Our data show that AA is able to program the differentiation potential of preadipocytes by regulating gene expression at the early stages of adipogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    MAB374
    Product Catalog Name:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • Expression patterns and role of prostaglandin-endoperoxide synthases, prostaglandin E synthases, prostacyclin synthase, prostacyclin receptor, peroxisome proliferator-act ... 19060098

    To determine if changes in endometrial expression of the enzymes and receptors involved in prostaglandin (PG) synthesis and action might provide insights into the PGs involved in the initiation of decidualization, ovariectomized steroid-treated rats at the equivalent of day 5 of pseudopregnancy were given a deciduogenic stimulus and killed at various times up to 32 h thereafter. The expression of PG-endoperoxide synthases (PTGS1 and PTGS2), microsomal PGE synthases (PTGES and PTGES2), cytosolic PGE synthase (PTGES3), prostacyclin synthase (PTGIS), prostacyclin receptor, peroxisome proliferator-activated receptor delta (PPARD) and retinoid x receptor alpha (RXRA) in endometrium was assessed by semiquantitative RT-PCR, western blot analyses and immunohistochemistry. In addition, to determine which PG is involved in mediating decidualization, we compared the ability of PGE(2), stable analogues of PGI(2), L165041 (an agonist of PPARD), and docasahexanoic acid (an agonist of RXRA) to increase endometrial vascular permeability (EVP, an early event in decidualization), and decidualization when infused into the uterine horns of rats sensitized for the decidual cell reaction (DCR). EVP was assessed by uterine concentrations of Evans blue 10 h after initiation of infusions. DCR was assessed by the uterine mass 5 days after the initiation of the infusions. Because enzymes associated with the synthesis of PGE(2), including PTGS2, are up-regulated in response to a deciduogenic stimulus and because PGE(2) was more effective than the PGI(2) analogues and PPARD and RXRA agonists in increasing EVP and inducing decidualization, we suggest that PGE(2) is most likely the PG involved in the initiation of decidualization in the rat.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Extracellular superoxide dismutase and cardiovascular disease. 12123763

    Excessive production and/or inadequate removal of reactive oxygen species, especially superoxide anion (O(2)(*-)), have been implicated in the pathogenesis of many cardiovascular diseases, including atherosclerosis, hypertension, diabetes, and in endothelial dysfunction by decreasing nitric oxide (NO) bioactivity. Since the vascular levels of O(2)(*-) are regulated by the superoxide dismutase (SOD) enzymes, a role of SOD in the cardiovascular disease is of substantial interest. Particularly, a major form of SOD in the vessel wall is the extracellular SOD (ecSOD). This review will discuss the characteristics of ecSOD and the role of ecSOD in cardiovascular diseases.
    Document Type:
    Reference
    Product Catalog Number:
    07-704
  • Comparative evaluation of apoptotic activity in photoreceptor cells after intravitreal injection of bevacizumab and pegaptanib sodium in rabbits. 19255151

    PURPOSE: To evaluate quantitatively the apoptotic activity after intravitreal injections of pegaptanib sodium and bevacizumab in the rabbit retina. METHODS: Different doses of bevacizumab (0.25, 0.625, 1.25, and 2.5 mg) and pegaptanib sodium (0.15, 0.3, and 0.6 mg) were injected intravitreally in 48 rabbits. The eyes were enucleated at different times for early studies at day 14 and for late studies at 3 months after a single injection or at 3 months, with 1 injection in each of the 3 months (day 90). The time course and dose-response of photoreceptor cells in the rabbit retina after intravitreal injection of bevacizumab or pegaptanib sodium were examined by histologic analysis with hematoxylin and eosin (HE) staining, caspase-3 and -9 immunostaining, and in situ terminal-deoxynucleotidyl transferase-mediated biotin-deoxyuridine triphosphate nick-end labeling (TUNEL) of DNA fragments of paraffin-embedded sections. RESULTS: No sign of retinal toxicity was seen in HE stained histologic sections of eyes that had received bevacizumab or pegaptanib sodium. Nuclear DNA fragmentation in the outer retinal layers shown by the TUNEL method was evident in the high-dose groups (55.3% with 1.25 mg and 64.5% with 2.5 mg bevacizumab, and 48.5% with 0.6 mg pegaptanib sodium) at 14 days and also in the clinical dose groups (49.8% with three injections [1 each month] of 0.625 mg bevacizumab and 44.3% with 0.15 mg pegaptanib sodium) at 90 days. The ratios of TUNEL-positive cells in physiologic saline and the sham-control groups were 32.3% and 21%, respectively. CONCLUSIONS: Intravitreal injection of bevacizumab and pegaptanib sodium caused a significant increase in apoptotic activity in rabbit photoreceptor cells. However, although bevacizumab caused increasing apoptotic activity at higher doses, similar dose-dependent adverse effects were not evident for pegaptanib sodium.
    Document Type:
    Reference
    Product Catalog Number:
    S7101
    Product Catalog Name:
    ApopTag® Plus Peroxidase In Situ Apoptosis Kit
  • Pbx1 represses osteoblastogenesis by blocking Hoxa10-mediated recruitment of chromatin remodeling factors. 20439491

    Abdominal-class homeodomain-containing (Hox) factors form multimeric complexes with TALE-class homeodomain proteins (Pbx, Meis) to regulate tissue morphogenesis and skeletal development. Here we have established that Pbx1 negatively regulates Hoxa10-mediated gene transcription in mesenchymal cells and identified components of a Pbx1 complex associated with genes in osteoblasts. Expression of Pbx1 impaired osteogenic commitment of C3H10T1/2 multipotent cells and differentiation of MC3T3-E1 preosteoblasts. Conversely, targeted depletion of Pbx1 by short hairpin RNA (shRNA) increased expression of osteoblast-related genes. Studies using wild-type and mutated osteocalcin and Bsp promoters revealed that Pbx1 acts through a Pbx-binding site that is required to attenuate gene activation by Hoxa10. Chromatin-associated Pbx1 and Hoxa10 were present at osteoblast-related gene promoters preceding gene expression, but only Hoxa10 was associated with these promoters during transcription. Our results show that Pbx1 is associated with histone deacetylases normally linked with chromatin inactivation. Loss of Pbx1 from osteoblast promoters in differentiated osteoblasts was associated with increased histone acetylation and CBP/p300 recruitment, as well as decreased H3K9 methylation. We propose that Pbx1 plays a central role in attenuating the ability of Hoxa10 to activate osteoblast-related genes in order to establish temporal regulation of gene expression during osteogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Identification of active retinaldehyde dehydrogenase isoforms in the postnatal human eye. 25793304

    Retinaldehyde dehydrogenase 2 (RALDH2) has been implicated in regulating all-trans-retinoic acid (atRA) synthesis in response to visual signals in animal models of myopia. To explore the potential role of retinaldehyde dehydrogenase (RALDH) enzymes and atRA in human postnatal ocular growth, RALDH activity, along with the distribution of RALDH1, RALDH2, and RALDH3 in the postnatal eye was determined.Retina, retinal pigment epithelium (RPE), choroid, and sclera were isolated from donor human eyes. RALDH catalytic activity was measured in tissue homogenates using an in vitro atRA synthesis assay together with HPLC quantification of synthesized atRA. Homogenates were compared by western blotting for RALDH1, RALDH2, and RALDH3 protein. Immunohistochemistry was used to determine RALDH1 and RALDH2 localization in posterior fundal layers of the human eye.In the postnatal human eye, RALDH catalytic activity was detected in the choroid (6.84 ± 1.20 pmol/hr/ug), RPE (5.46 ± 1.18 pmol/hr/ug), and retina (4.21 ± 1.55 pmol/hr/ug), indicating the presence of active RALDH enzymes in these tissues. RALDH2 was most abundant in the choroid and RPE, in moderate abundance in the retina, and in relatively low abundance in sclera. RALDH1 was most abundant in the choroid, in moderate abundance in the sclera, and substantially reduced in the retina and RPE. RALDH3 was undetectable in human ocular fundal tissues. In the choroid, RALDH1 and RALDH2 localized to slender cells in the stroma, some of which were closely associated with blood vessels.Results of this study demonstrated that: 1) Catalytically active RALDH is present in postnatal human retina, RPE, and choroid, 2) RALDH1 and RALDH2 isoforms are present in these ocular tissues, and 3) RALDH1 and RALDH2 are relatively abundant in the choroid and/or RPE. Taken together, these results suggest that RALDH1 and 2 may play a role in the regulation of postnatal ocular growth in humans through the synthesis of atRA.
    Document Type:
    Reference
    Product Catalog Number:
    ABD12
    Product Catalog Name:
    Anti-Aldehyde dehydrogenase 1 (ALDH1A1) Antibody