Millipore Sigma Vibrant Logo
 

Fed-Batch


38 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (14)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Fed-batch production of glucose 6-phosphate dehydrogenase using recombinant Saccharomyces cerevisiae. 18478428

    The strain Saccharomyces cerevisiae W303-181, having the plasmid YEpPGK-G6P (built by coupling the vector YEPLAC 181 with the promoter phosphoglycerate kinase 1), was cultured by fed-batch process in order to evaluate its capability in the formation of glucose 6-phosphate dehydrogenase (EC.1.1.1.49). Two liters of culture medium (10.0 g/L glucose, 3.7 g/L yeast nitrogen broth (YNB), 0.02 g/L L-tryptophan, 0.02 g/L L-histidine, 0.02 g/L uracil, and 0.02 g/L adenine) were inoculated with 1.5 g dry cell/L and left fermenting in the batch mode at pH 5.7, aeration of 2.2 vvm, 30 degrees C, and agitation of 400 rpm. After glucose concentration in the medium was lower than 1.0 g/L, the cell culture was fed with a solution of glucose (10.0 g/L) or micronutrients (L-tryptophan, L-histidine, uracil, and adenine each one at a concentration of 0.02 g/L) following the constant, linear, or exponential mode. The volume of the culture medium in the fed-batch process was varied from 2 L up to 3 L during 5 h. The highest glucose 6-phosphate dehydrogenase activity (350 U/L; 1 U=1 micromol of NADP/min) occurred when the glucose solution was fed into the fermenter through the decreasing linear mode.
    Document Type:
    Reference
    Product Catalog Number:
    07-720
  • Independent exponential feeding of glycerol and methanol for fed-batch culture of recombinant Hansenula polymorpha DL-1. 14645999

    As a novel feeding strategy for optimizing human epidermal growth factor (hEGF) production with a recombinant Hansenula polymorpha DL-1 using the methanol oxidase (MOX) promoter in H. polymorpha DL-1, independent exponential feeding of two substrates was used. A simple kinetic model considering the cell growth on two substrates was established and used to calculate the respective feeding rates of glycerol and methanol. In the fedbatch culture with methanol-only feeding, the optimal set point of specific growth rate on methanol was found to be 0.10 h-1. When the fed-batch cultures were conducted by the independent feeding of glycerol and methanol, the actual specific growth rate on glycerol and methanol was slightly lower than the set point of specific growth rate. By the uncoupled feeding of glycerol and methanol the volumetric productivity of hEGF increased from 6.4 to 8.0 mg/(L.h), compared with methanol-only feeding.
    Document Type:
    Reference
    Product Catalog Number:
    03-111
    Product Catalog Name:
    RIPAb+ AUF1 - RIP Validated Antibody and Primer Set
  • A polydioxanone electrospun valved patch to replace the right ventricular outflow tract in a growing lamb model. 20181391

    A major issue in congenital heart surgery is the lack of viable right ventricular outflow tract (RVOT) replacement materials. Several biomaterials have been used, with different scaffolds and cells, but they have failed to restore a tri-layered RVOT, and reoperations are often required. We investigated the function, histological changes and potential of growth and tissue regeneration of polydioxanone (PDO) electrospun bioabsorbable valved patches seeded with mesenchymal stem cells (MSCs) in the RVOT of growing lambs. Autologous blood-derived MSCs were labeled with quantum dots and seeded on PDO electrospun valved patches. Those were implanted into the RVOT of 6 growing lambs followed up until 8 months. Results were assessed by echocardiography, magnetic resonance imaging (MRI), histology, immunohistochemistry and biochemical assays. Tissue-engineered RVOT were neither stenotic nor aneurismal and displayed a growth potential, with less fibrosis, less calcifications and no thrombus compared with control polytetrafluoroethylene (PTFE)-pericardial patches. The PDO scaffold was completely degraded and replaced by a viable, three-layered, endothelialized tissue and an extracellular matrix with elastic fibers similar to that of native tissue. Detection of quantum dots at 1 month suggested that at least some of the cells were-derived from the grafted cells. A polydioxanone electrospun tissue-engineered valved transannular patch seems to be a promising device in restoring a living RVOT and could ultimately lead to applications in the treatment of congenital RVOT diseases.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1552
  • Lactic acid production through cell-recycle repeated-batch bioreactor. 12721439

    The effect of various nitrogen sources on cell growth and lactic acid production was investigated. The most effective nitrogen source was yeast extract; more yeast extract gave higher cell growth and lactic acid productivity. Yeast extract dosage and cell growth were proportional up to a yeast extract concentration of 30 g/L, and lactic acid productivity was linearly correlated up to a yeast extract dosage of 25 g/L. However, increasing the yeast extract content raises the total production cost of lactic acid. Therefore, we attempted to find the optimum yeast extract dosage for a repeated-batch operation with cell recycling. The results show that when using Enterococcus faecalis RKY1 only 26% of the yeast extract dosage for a conventional batch fermentation was sufficient to produce the same amount of lactic acid, whereas the lactic acid concentration in the product stream (92-94 g/L) and lactic acid productivity (6.03-6.20 g/[L x h]) were similar to those of a batch operation. Furthermore, long-term stability was established.
    Document Type:
    Reference
    Product Catalog Number:
    20-108
    Product Catalog Name:
    Assay Dilution Buffer I (ADBI)
  • Characterization of polysaccharide production of haemophilus influenzae Type b and its relationship to bacterial cell growth. 14515024

    Haemophilus influenzae type b (Hib) causes invasive infections in infants and young children. Vaccines consisting of Hib capsular polysaccharide (polymer of ribosylribitol phosphate [PRP]) conjugated to a protein are effective in the prevention of such infections. The production of capsular polysaccharide type b was studied in three cultivation conditions: single, glucose pulse, and repeated batch. Specific polysaccharide production (Yp/x) was calculated for all experiments, showing the following values: 67 (single-batch cultivation), 71 (glucose pulse), 75 (repeated-batch cultivation, first batch), and 87 mg of PRP/g of dry cell weight (DCW) (repeated-batch cultivation, second batch). Biomass concentration reached approximately 1.8 g of DCW/L, while polysaccharide concentration was about approximately 132 mg/L in the three fermentation runs. Polysaccharide synthesis is associated with cell growth in all studied conditions as established by Kono's analysis and Luedeking-Piret's model.
    Document Type:
    Reference
    Product Catalog Number:
    03-110
    Product Catalog Name:
    RIPAb+ Ago2 - RIP Validated Antibody and Primer Set