Millipore Sigma Vibrant Logo
 

amnis+internalization


39 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (7)
Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • «
  • <
  • 1
  • >
  • »
  • Retromer disruption promotes amyloidogenic APP processing. 21515373

    Retromer deficiency has been implicated in sporadic AD and animals deficient in retromer components exhibit pronounced neurodegeneration. Because retromer performs retrograde transport from the endosome to the Golgi apparatus and neuronal Aβ is found in late endosomal compartments, we speculated that retromer malfunction might enhance amyloidogenic APP processing by promoting interactions between APP and secretase enzymes in late endosomes. We have evaluated changes in amyloid precursor protein (APP) processing and trafficking as a result of disrupted retromer activity by knockdown of Vps35, a vacuolar sorting protein that is an essential component of the retromer complex. Knocking down retromer activity produced no change in the quantity or cellular distribution of total cellular APP and had no affect on internalization of cell-surface APP. Retromer deficiency did, however, increase the ratio of secreted Aβ42:Aβ40 in HEK-293 cells over-expressing APP695, due primarily to a decrease in Aβ40 secretion. Recent studies suggest that the retromer-trafficked protein, Wntless, is secreted at the synapse in exosome vesicles and that these same vesicles contain Aβ. We therefore hypothesized that retromer deficiency may be associated with altered exosomal secretion of APP and/or secretase fragments. Holo-APP, Presenilin and APP C-terminal fragments were detected in exosomal vesicles secreted from HEK-293 cells. Levels of total APP C-terminal fragments were significantly increased in exosomes secreted by retromer deficient cells. These data suggest that reduced retromer activity can mimic the effects of familial AD Presenilin mutations on APP processing and promote export of amyloidogenic APP derivatives.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry. 18216114

    Reovirus cell entry is mediated by attachment to cell surface carbohydrate and junctional adhesion molecule A (JAM-A) and internalization by beta1 integrin. The beta1 integrin cytoplasmic tail contains two NPXY motifs, which function in recruitment of adaptor proteins and clathrin for endocytosis and serve as sorting signals for internalized cargo. As reovirus infection requires disassembly in the endocytic compartment, we investigated the role of the beta1 integrin NPXY motifs in reovirus internalization. In comparison to wild-type cells (beta1+/+ cells), reovirus infectivity was significantly reduced in cells expressing mutant beta1 integrin in which the NPXY motifs were altered to NPXF (beta1+/+Y783F/Y795F cells). However, reovirus displayed equivalent binding and internalization levels following adsorption to beta1+/+ cells and beta1+/+Y783F/Y795F cells, suggesting that the NPXY motifs are essential for transport of reovirus within the endocytic pathway. Reovirus entry into beta1+/+ cells was blocked by chlorpromazine, an inhibitor of clathrin-mediated endocytosis, while entry into beta1+/+Y783F/Y795F cells was unaffected. Furthermore, virus was distributed to morphologically distinct endocytic organelles in beta1+/+ and beta1+/+Y783F/Y795F cells, providing further evidence that the beta1 integrin NPXY motifs mediate sorting of reovirus in the endocytic pathway. Thus, NPXY motifs in the beta1 integrin cytoplasmic tail are required for functional reovirus entry, which indicates a key role for these sequences in endocytosis of a pathogenic virus.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1997
    Product Catalog Name:
    Anti-Integrin β1 Antibody, clone MB1.2
  • Dynamin 1 regulates amyloid generation through modulation of BACE-1. 23024787

    Several lines of investigation support the notion that endocytosis is crucial for Alzheimer's disease (AD) pathogenesis. Substantial evidence have already been reported regarding the mechanisms underlying amyloid precursor protein (APP) traffic, but the regulation of beta-site APP-Cleaving Enzyme 1 (BACE-1) distribution among endosomes, TGN and plasma membrane remains unclear. Dynamin, an important adaptor protein that controls sorting of many molecules, has recently been associated with AD but its functions remain controversial. Here we studied possible roles for dynamin 1 (dyn1) in Aβ biogenesis.We found that genetic perturbation of dyn1 reduces both secreted and intracellular Aβ levels in cell culture. There is a dramatic reduction in BACE-1 cleavage products of APP (sAPPβ and βCTF). Moreover, dyn1 knockdown (KD) leads to BACE-1 redistribution from the Golgi-TGN/endosome to the cell surface. There is an increase in the amount of surface holoAPP upon dyn1 KD, with resultant elevation of α-secretase cleavage products sAPPα and αCTF. But no changes are seen in the amount of nicastrin (NCT) or PS1 N-terminal fragment (NTF) at cell surface with dyn1 KD. Furthermore, treatment with a selective dynamin inhibitor Dynasore leads to similar reduction in βCTF and Aβ levels, comparable to changes with BACE inhibitor treatment. But combined inhibition of BACE-1 and dyn1 does not lead to further reduction in Aβ, suggesting that the Aβ-lowering effects of dynamin inhibition are mainly mediated through regulation of BACE-1 internalization. Aβ levels in dyn1(-/-) primary neurons, as well as in 3-month old dyn1 haploinsufficient animals with AD transgenic background are consistently reduced when compared to their wildtype counterparts.In summary, these data suggest a previously unknown mechanism by which dyn1 affects amyloid generation through regulation of BACE-1 subcellular localization and therefore its enzymatic activities.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Extracellular cleavage of E-cadherin by leukocyte elastase during acute experimental pancreatitis in rats. 16230078

    BACKGROUND AIMS: Cadherins play an important role in cell-cell contact formation at adherens junctions. During the course of acute pancreatitis, adherens junctions are known to dissociate-a requirement for the interstitial accumulation of fluid and inflammatory cells-but the underlying mechanism is unknown. METHODS: Acute pancreatitis was induced in rats by supramaximal cerulein infusion. The pancreas and lungs were either homogenized for protein analysis or fixed for morphology. Protein sequencing was used to identify proteolytic cleavage sites and freshly prepared acini for ex vivo studies with recombinant proteases. Results were confirmed in vivo by treating experimental pancreatitis animals with specific protease inhibitors. RESULTS: A 15-kilodalton smaller variant of E-cadherin was detected in the pancreas within 60 minutes of pancreatitis, was found to be the product of E-cadherin cleavage at amino acid 394 in the extracellular domain that controls cell-contact formation, and was consistent with E-cadherin cleavage by leukocyte elastase. Employing cell culture and ex vivo acini leukocyte elastase was confirmed to cleave E-cadherin at the identified position, followed by dissociation of cell contacts and the internalization of cleaved E-cadherin to the cytosol. Inhibition of leukocyte elastase in vivo prevented E-cadherin cleavage during pancreatitis and reduced leukocyte transmigration into the pancreas. CONCLUSIONS: These data provide evidence that polymorphonuclear leukocyte elastase is involved in, and required for, the dissociation of cell-cell contacts at adherens junctions, the extracellular cleavage of E-cadherin, and, ultimately, the transmigration of leukocytes into the epithelial tissue during the initial phase of experimental pancreatitis.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1056
  • Exercise reduces GABA synaptic input onto nucleus tractus solitarii baroreceptor second-order neurons via NK1 receptor internalization in spontaneously hypertensive rats. 19261870

    A single bout of mild to moderate exercise can lead to a postexercise decrease in blood pressure in hypertensive subjects, namely postexercise hypotension (PEH). The full expression of PEH requires a functioning baroreflex, hypertension, and activation of muscle afferents (exercise), suggesting that interactions in the neural networks regulating exercise and blood pressure result in this fall in blood pressure. The nucleus tractus solitarii (NTS) is the first brain site that receives inputs from nerves carrying blood pressure and muscle activity information, making it an ideal site for integrating cardiovascular responses to exercise. During exercise, muscle afferents excite NTS GABA neurons via substance P and microinjection of a substance P-neurokinin 1 receptor (NK1-R) antagonist into the NTS attenuates PEH. The data suggest that an interaction between the substance P NK1-R and GABAergic transmission in the NTS may contribute to PEH. We performed voltage clamping on NTS baroreceptor second-order neurons in spontaneously hypertensive rats (SHRs). All animals were killed within 30 min and the patch-clamp recordings were performed 2-8 h after the sham/exercise protocol. The data showed that a single bout of exercise reduces (1) the frequency but not the amplitude of GABA spontaneous IPSCs (sIPSCs), (2) endogenous substance P influence on sIPSC frequency, and (3) sIPSC frequency response to exogenous application of substance P. Furthermore, immunofluorescence labeling in NTS show an increased substance P NK1-R internalization on GABA neurons. The data suggest that exercise-induced NK1-R internalization results in a reduced intrinsic inhibitory input to the neurons in the baroreflex pathway.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Human N-methyl D-aspartate receptor antibodies alter memory and behaviour in mice. 25392198

    Anti-N-methyl D-aspartate receptor (NMDAR) encephalitis is a severe neuropsychiatric disorder that associates with prominent memory and behavioural deficits. Patients' antibodies react with the N-terminal domain of the GluN1 (previously known as NR1) subunit of NMDAR causing in cultured neurons a selective and reversible internalization of cell-surface receptors. These effects and the frequent response to immunotherapy have suggested an antibody-mediated pathogenesis, but to date there is no animal model showing that patients' antibodies cause memory and behavioural deficits. To develop such a model, C57BL6/J mice underwent placement of ventricular catheters connected to osmotic pumps that delivered a continuous infusion of patients' or control cerebrospinal fluid (flow rate 0.25 µl/h, 14 days). During and after the infusion period standardized tests were applied, including tasks to assess memory (novel object recognition in open field and V-maze paradigms), anhedonic behaviours (sucrose preference test), depressive-like behaviours (tail suspension, forced swimming tests), anxiety (black and white, elevated plus maze tests), aggressiveness (resident-intruder test), and locomotor activity (horizontal and vertical). Animals sacrificed at Days 5, 13, 18, 26 and 46 were examined for brain-bound antibodies and the antibody effects on total and synaptic NMDAR clusters and protein concentration using confocal microscopy and immunoblot analysis. These experiments showed that animals infused with patients' cerebrospinal fluid, but not control cerebrospinal fluid, developed progressive memory deficits, and anhedonic and depressive-like behaviours, without affecting other behavioural or locomotor tasks. Memory deficits gradually worsened until Day 18 (4 days after the infusion stopped) and all symptoms resolved over the next week. Accompanying brain tissue studies showed progressive increase of brain-bound human antibodies, predominantly in the hippocampus (maximal on Days 13-18), that after acid extraction and characterization with GluN1-expressing human embryonic kidney cells were confirmed to be against the NMDAR. Confocal microscopy and immunoblot analysis of the hippocampus showed progressive decrease of the density of total and synaptic NMDAR clusters and total NMDAR protein concentration (maximal on Day 18), without affecting the post-synaptic density protein 95 (PSD95) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors. These effects occurred in parallel with memory and other behavioural deficits and gradually improved after Day 18, with reversibility of symptoms accompanied by a decrease of brain-bound antibodies and restoration of NMDAR levels. Overall, these findings establish a link between memory and behavioural deficits and antibody-mediated reduction of NMDAR, provide the biological basis by which removal of antibodies and antibody-producing cells improve neurological function, and offer a model for testing experimental therapies in this and similar disorders.
    Document Type:
    Reference
    Product Catalog Number:
    MAB363
    Product Catalog Name:
    Anti-NMDAR1 Antibody, clone 54.1
  • Spontaneous cardiac calcinosis in BALB/cByJ mice. 23561935

    BALB/c mice are predisposed to dystrophic cardiac calcinosis-the mineralization of cardiac tissues, especially the right ventricular epicardium. In previous reports, the disease appeared in aged animals and had an unknown etiology. In the current study, we report a substrain of BALB/c mice (BALB/cByJ) that develops disease early and with high frequency. Here we analyzed hearts grossly to identify the presence and measure the severity of disease and to compare BALB/c substrains. Histologic analysis and fluorescent and immunofluorescent microscopy were used to characterize the calcinotic lesions. BALB/cByJ mice exhibited more frequent and severe calcium deposition than did BALB/c mice of other substrains (90% compared with 3% at 5 wk). At this age, lesions covered an average of 30% of the total ventricular surface area in BALB/cByJ mice, compared with less than 1% in other strains. In bone-marrow-chimeric mice, green fluorescent protein was used as a marker to show that the lesions contain an infiltration of cells of bone marrow origin. Lesion histology showed that calcium deposits were surrounded by fibrosis with interspersed immune cells. Lymphocytes, macrophages, and granulocytes were all present. Internalization of the gap-junction protein connexin 43 was observed in myocytes adjacent to lesions. In conclusion, BALB/cByJ mice exhibit more frequent and severe dystrophic cardiac calcinosis than do other BALB/c substrains. Our findings suggest that immune cells are actively recruited to lesions and that myocyte gap junctions are altered near lesions.
    Document Type:
    Reference
    Product Catalog Number:
    AB1728
    Product Catalog Name:
    Anti-Connexin 43 Antibody, CT, cytosolic
  • «
  • <
  • 1
  • >
  • »