Fibroblast growth factor receptor (FGFR) and candidate signaling molecule distribution within rat and human retina.
- PURPOSE: To map the expression and distribution of FGFR and potential FGFR-related signaling molecules within rat and human retina. METHODS: Sections of postnatal 5 day old and adult rat, and aged human retina, and cell cultures prepared from selected cell populations of young rat retina, were immunolabeled with specific antisera to FGFR (FGFR-1, -2, -3, and -4) or candidate signaling molecules [phospholipase Cg1 (PLCg1), son of sevenless 1 and 2 (SOS1, SOS2), extracellular signal-regulated kinase 1 and 2 (ERK1/2), protein tyrosine phosphatase (SH-PTP2) and SH2-containing protein (Shc)], and with multiple retinal cell-type specific antibodies. Controls were conducted using primary antisera pre-adsorbed with the corresponding immunizing peptide. RESULTS: All FGFR antisera showed strong labeling of inner retina [inner nuclear layer, inner plexiform layer and ganglion cell layer (INL, IPL and GCL respectively)] in rat and human retina, although there were distinct differences in individual patterns. FGFR-3 was particularly intense in ganglion cell bodies and dendrites, and was absent from photoreceptors and bipolar cells in vitro. FGFR-1 and FGFR-4 also labeled the outer nuclear layer (ONL), more intensely in adult than in young tissue, and FGFR-4 was especially prominent within inner segments. FGFR-2 and -3 were only weakly expressed in the ONL, but FGFR-2 showed specific labeling of cone outer segments in human retina. Candidate FGFR-signaling molecules also showed generally higher expression in the inner than outer retina in the different samples. Shc immunolabeling was apparent in the GCL and nascent photoreceptor outer segments in young and adult retina. SOS1 expression was much more intense than SOS2 in the ONL, although the latter showed selective intense staining of a sub-population in the INL and GCL. These ex vivo data were confirmed in cultures prepared from young rat retina. Pure photoreceptor cultures exhibited strong expression of FGFR-1 and -4, and faint expression of FGFR-2 and -3. In mixed inner retinal cultures, anti-FGFR-1 labeled neurons and Müller glia with equal intensity, while the other FGFR antisera showed preferential staining of neurons. FGFR-3 was strongly expressed by ganglion and amacrine cells but not by other types. Signaling molecules showed widespread expression, but of variable intensity, in all cells. All control experiments using corresponding peptide pre-adsorption led to complete removal of immunostaining. CONCLUSIONS: Rat and human retinal cells showed a largely similar, widespread expression of multiple FGFR and candidate FGFR-related signaling molecules. Distinct differences in development, species, cell- and sub-cell type distribution were apparent, suggesting that specific FGFR/FGF ligands and transduction pathways may operate in different cells.
- Document Type:
- Reference
- Product Catalog Number:
- 06-203