Millipore Sigma Vibrant Logo
 

fosfato patron


111 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (111)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

SourceType

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Identification of an immune-responsive mesolimbocortical serotonergic system: potential role in regulation of emotional behavior. 17367941

    Peripheral immune activation can have profound physiological and behavioral effects including induction of fever and sickness behavior. One mechanism through which immune activation or immunomodulation may affect physiology and behavior is via actions on brainstem neuromodulatory systems, such as serotonergic systems. We have found that peripheral immune activation with antigens derived from the nonpathogenic, saprophytic bacterium, Mycobacterium vaccae, activated a specific subset of serotonergic neurons in the interfascicular part of the dorsal raphe nucleus (DRI) of mice, as measured by quantification of c-Fos expression following intratracheal (12 h) or s.c. (6 h) administration of heat-killed, ultrasonically disrupted M. vaccae, or heat-killed, intact M. vaccae, respectively. These effects were apparent after immune activation by M. vaccae or its components but not by ovalbumin, which induces a qualitatively different immune response. The effects of immune activation were associated with increases in serotonin metabolism within the ventromedial prefrontal cortex, consistent with an effect of immune activation on mesolimbocortical serotonergic systems. The effects of M. vaccae administration on serotonergic systems were temporally associated with reductions in immobility in the forced swim test, consistent with the hypothesis that the stimulation of mesolimbocortical serotonergic systems by peripheral immune activation alters stress-related emotional behavior. These findings suggest that the immune-responsive subpopulation of serotonergic neurons in the DRI is likely to play an important role in the neural mechanisms underlying regulation of the physiological and pathophysiological responses to both acute and chronic immune activation, including regulation of mood during health and disease states. Together with previous studies, these findings also raise the possibility that immune stimulation activates a functionally and anatomically distinct subset of serotonergic neurons, different from the subset of serotonergic neurons activated by anxiogenic stimuli or uncontrollable stressors. Consequently, selective activation of specific subsets of serotonergic neurons may have distinct behavioral outcomes.
    Document Type:
    Reference
    Product Catalog Number:
    AB152
    Product Catalog Name:
    Anti-Tyrosine Hydroxylase Antibody
  • Selective up-regulation of JunD transcript and protein expression in vasopressinergic supraoptic nucleus neurones in water-deprived rats. 22827527

    The magnocellular neurones (MCN) of the supraoptic nucleus (SON) undergo reversible changes during dehydration. We hypothesise that alterations in steady-state transcript levels might be partially responsible for this plasticity. In turn, regulation of transcript abundance might be mediated by transcription factors. We have previously used microarrays to identify changes in the expression of mRNAs encoding transcription factors in response to water deprivation. We observed down-regulation of 11 and up-regulation of 31 transcription factor transcripts, including members of the activator protein-1 gene family, namely c-fos, c-jun, fosl1 and junD. Because JunD expression and regulation within the SON has not been previously described, we have used in situ hybridisation and the quantitative reverse transcriptase-polymerase chain reaction to confirm the array results, demonstrating a significant increase in JunD mRNA levels following 24 and 72 h of water deprivation. Western blot and immunohistochemistry revealed a significant increase in JunD protein expression following dehydration. Double-staining fluorescence immunohistochemistry with a neurone-specific marker (NeuN) demonstrated that JunD staining is predominantly neuronal. Additionally, JunD immunoreactivity is observed primarily in vasopressin-containing neurones with markedly less staining seen in oxytocin-containing MCNs. Furthermore, JunD is highly co-expressed with c-Fos in MCNs of the SON following dehydration. These results suggest that JunD plays a role in the regulation of gene expression within MCNs of the SON in association with other Fos and Jun family members.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Mu-opioid stimulation in rat prefrontal cortex engages hypothalamic orexin/hypocretin-containing neurons, and reveals dissociable roles of nucleus accumbens and hypothala ... 24259576

    Mu-opioid receptor (μOR) stimulation within ventral medial prefrontal cortex (vmPFC) induces feeding and hyperactivity, resulting possibly from recruitment of glutamate signaling in multiple vmPFC projection targets. We tested this hypothesis by analyzing Fos expression in vmPFC terminal fields after intra-vmPFC μOR stimulation, and by examining of the impact of glutamate receptor blockade in two feeding-related targets of vmPFC, the lateral-perifornical hypothalamic area (LH-PeF) and nucleus accumbens shell (Acb shell), upon behavioral effects elicited by intra-vmPFC μOR stimulation in rats. Intra-vmPFC infusion of the μOR agonist, DAMGO, provoked Fos expression in the dorsomedial sector of tuberal hypothalamus (including the perifornical area) and increased the percentage of Fos-expressing hypocretin/orexin-immunoreactive neurons in these zones. NMDA receptor blockade in the LH-PeF nearly eliminated intra-vmPFC DAMGO-induced food intake without altering DAMGO-induced hyperactivity. In contrast, blocking AMPA-type glutamate receptors within the Acb shell (the feeding-relevant subtype in this structure) antagonized intra-vmPFC DAMGO-induced hyperlocomotion but enhanced food intake. Intra-vmPFC DAMGO also elevated the breakpoint for sucrose-reinforced progressive-ratio responding; this effect was significantly enhanced by concomitant AMPA blockade in the Acb shell. Conversely, intra-Acb shell AMPA stimulation reduced breakpoint and increased nonspecific responding on the inactive lever. These data indicate intra-vmPFC μOR signaling jointly modulates appetitive motivation and generalized motoric activation through functionally dissociable vmPFC projection targets. These findings may shed light on the circuitry underlying disorganized appetitive responses in psychopathology; e.g., binge eating and opiate or alcohol abuse, disorders in which μORs and aberrant cortical activation have been implicated.
    Document Type:
    Reference
    Product Catalog Number:
    AB3096
    Product Catalog Name:
    Anti-Orexin Antibody, Prepro
  • Chronic intermittent hypoxia sensitizes acute hypothalamic-pituitary-adrenal stress reactivity and Fos induction in the rat locus coeruleus in response to subsequent immo ... 18554809

    Obstructive sleep apnea (OSA) is associated with several pathophysiological conditions, including hypertension, obesity, insulin resistance, hypothalamic-pituitary-adrenal (HPA) dysregulation, and other endocrine and metabolic disturbances comprising the "metabolic syndrome." Repeated episodes of hypoxia in OSA may represent a chronic intermittent stress, leading to HPA dysregulation. Alterations in HPA reactivity could then contribute to or exacerbate other pathophysiological processes. We showed previously that another metabolic stressor, chronic intermittent cold stress, enhanced noradrenergic facilitation of acute HPA stress reactivity. In this study, we investigated whether chronic intermittent hypoxia (CIH), a rat model for the arterial hypoxemia that accompanies OSA, similarly sensitizes the HPA response to novel acute stress. Rats were exposed to CIH (alternating cycles of normoxia [3 min at 21% O(2)] and hypoxia [3 min at 10% O(2)], repeated continuously for 8 h/day during the light portion of the cycle for 7 days). On the day after the final CIH exposure, there were no differences in baseline plasma adrenocorticotropic hormone (ACTH), but the peak ACTH response to 30 min acute immobilization stress was greater in CIH-stressed rats than in controls. Induction of Fos expression by acute immobilization stress was comparable following CIH in several HPA-modulatory brain regions, including the paraventricular nucleus, bed nucleus of the stria terminalis, and amygdala. Fos induction was attenuated in lateral hypothalamus, an HPA-inhibitory region. By contrast, acute Fos induction was enhanced in noradrenergic neurons in the locus coeruleus following CIH exposure. Thus, similar to chronic cold stress, CIH sensitized acute HPA and noradrenergic stress reactivity. Plasticity in the acute stress response is important for long-term adaptation, but may also contribute to pathophysiological conditions associated with states of chronic or repeated stress, such as OSA. Determining the neural mechanisms underlying these adaptations may help us better understand the etiology of such disorders, and inform the development of more effective treatments.
    Document Type:
    Reference
    Product Catalog Number:
    MAB308
    Product Catalog Name:
    Anti-Dopamine β Hydroxylase Antibody, clone 4F10.2
  • Hypoglycemia activates arousal-related neurons and increases wake time in adult rats. 17434543

    Hypoglycemia resulting from excess of exogenous or endogenous insulin elicits central nervous system activation that contributes to counterregulatory hormone secretion. In adult humans without diabetes, hypoglycemia occurring during sleep usually produces cortical activation with awakening. However, in adult humans with type 1 diabetes, hypoglycemic arousal appears blunted or absent. We hypothesized that insulin injection sufficient to produce hypoglycemia would induce awakening in adult male rats. Polysomnographic studies were carried out to characterize the effect of insulin injection on measures of sleep and waking during a circadian time of increased sleep. Compared to a baseline day, insulin treatment more than doubled the time spent awake, from 18.4+/-2.6% after saline injection to 48.0+/-5.5% after insulin. Insulin injection also reduced rapid eye movement sleep (REMS) from 27.3+/-1.8% to 5.6+/-1.3%. The percent of time in non-REM sleep (NREMS) sleep was not different between saline and insulin days, however, NREMS after insulin was fragmented, with increased number and decreased duration of episodes. These electrophysiological data indicate that insulin-induced hypoglycemia is an arousing stimulus in rats, as in nondiabetic adult humans. We also studied the effect of insulin on activation of selected arousal-related neurons using immunohistochemical detection of Fos. Fos-immunoreactivity increased in orexin (OX) neurons after insulin, from 8.7+/-4.9% after saline injection to 37+/-9% after insulin. Basal forebrain cholinergic nuclei also showed increased Fos-immunoreactivity after insulin. These correlated behavioral and histological data provide targets for future studies of the neural pathways underlying hypoglycemic arousal.
    Document Type:
    Reference
    Product Catalog Number:
    AB5042P
    Product Catalog Name:
    Anti-Choline Acetyltransferase Antibody
  • Unilateral cortical application of tumor necrosis factor alpha induces asymmetry in Fos- and interleukin-1beta-immunoreactive cells within the corticothalamic projection. 16098952

    A unilateral microinjection of tumor necrosis factor alpha (TNFalpha) (150 ng) onto the primary somatosensory cortex induces state-dependent asymmetries in electroencephalographic (EEG) slow wave activity during non-rapid eye movement sleep in rats [H. Yoshida, Z. Peterfi, F. Garcia-Garcia, R. Kirkpatrick, T. Yasuda, J.M. Krueger, State-specific asymmetries in EEG slow wave activity induced by local application of TNF alpha, Brain Res. 1009 (2004) 129-136]. In the current study, analogous TNFalpha injections were performed to determine Fos- and interleukin-1beta (IL1beta) immunoreactivity (IR). A unilateral microinjection of TNFalpha increased the number of Fos- and IL1beta-IR cells in the primary somatosensory cortex relative to the contralateral side that received heat-inactivated TNFalpha. These asymmetric TNFalpha-induced increases in the number of Fos- and IL1beta-IR cells were evident along the outside surface of the cortex (mainly layers II and III) in a restricted rostral to caudal zone. Asymmetrical increases in the number of Fos-IR cells were also observed in the subcortical region that receives the main cortical projection from the somatosensory cortex, the somatic region of the reticular nucleus of the thalamus (reticular thalamus). The IL1beta-IR cells double-labeled with glial fibrillary acidic protein (GFAP), suggesting that many of the IL1beta-IR cells were astrocytes. The number of the IL1beta-IR cells in the reticular thalamus increased significantly ipsilateral to the TNFalpha injection. Current results indicated that Fos- and IL1beta-IR may be utilized to study the functional neuroanatomy involved in the TNFalpha-mediated state-dependent enhancement of EEG slow wave activity.
    Document Type:
    Reference
    Product Catalog Number:
    AB5804
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein (GFAP) Antibody
  • Habituation to the test cage influences amphetamine-induced locomotion and Fos expression and increases FosB/DeltaFosB-like immunoreactivity in mice. 16713106

    Pre-exposure to the testing cage (habituation or familiarization) is a common procedure aimed at reducing the interference of novelty-induced arousal and drug-independent individual differences on neural and behavioral measures. However, recent results suggest that this procedure might exert a major influence on the effects of addictive drugs. The present experiments tested the effects of repeated exposure to a test cage (1 h daily for four consecutive days) on amphetamine-induced locomotion and Fos expression as well as on FosB/DeltaFosB-like immunoreactivity in mice of the C57BL/6J and DBA/2J inbred strains that differ for the response to amphetamine, stress and novelty. Daily experiences with the test cage increased FosB/DeltaFosB-like immunoreactivity in the medial-prefrontal cortex of both strains of mice and in the caudate of mice of the C57 strain, as reported for repeated stress in the rat. Moreover, previous habituation to the test cage reduced the locomotor response to a low dose of amphetamine only in DBA mice while it reduced amphetamine-induced Fos expression in medial-prefrontal cortex, dorsal caudate and the accumbens shell of mice of the C57 strain. These results demonstrate indexes of stress-like plasticity in the brains of mice exposed to a procedure of familiarization to the testing environment. Moreover, they suggest that the procedure of daily familiarization influences the pattern of brain Fos expression induced by amphetamine. Finally, they indicate complex interactions between experience with the testing environment, genotype and drug.
    Document Type:
    Reference
    Product Catalog Number:
    MAB369
    Product Catalog Name:
    Anti-Dopamine Transporter Antibody, NT, clone DAT-Nt
  • Three prime exonuclease I (TREX1) is Fos/AP-1 regulated by genotoxic stress and protects against ultraviolet light and benzo(a)pyrene-induced DNA damage. 20511593

    Cells respond to genotoxic stress with the induction of DNA damage defence functions. Aimed at identifying novel players in this response, we analysed the genotoxic stress-induced expression of DNA repair genes in mouse fibroblasts proficient and deficient for c-Fos or c-Jun. The experiments revealed a clear up-regulation of the three prime exonuclease I (trex1) mRNA following ultraviolet (UV) light treatment. This occurred in the wild-type but not c-fos and c-jun null cells, indicating the involvement of AP-1 in trex1 induction. Trex1 up-regulation was also observed in human cells and was found on promoter, RNA and protein level. Apart from UV light, TREX1 is induced by other DNA damaging agents such as benzo(a)pyrene and hydrogen peroxide. The mouse and human trex1 promoter harbours an AP-1 binding site that is recognized by c-Fos and c-Jun, and its mutational inactivation abrogated trex1 induction. Upon genotoxic stress, TREX1 is not only up-regulated but also translocated into the nucleus. Cells deficient in TREX1 show reduced recovery from the UV and benzo(a)pyrene-induced replication inhibition and increased sensitivity towards the genotoxins compared to the isogenic control. The data revealed trex1 as a novel DNA damage-inducible repair gene that plays a protective role in the genotoxic stress response.
    Document Type:
    Reference
    Product Catalog Number:
    05-164
    Product Catalog Name:
    Anti-PLCβ-1 Antibody
  • Different antipsychotics elicit different effects on magnocellular oxytocinergic and vasopressinergic neurons as revealed by Fos immunohistochemistry. 19774673

    Acute administration of antipsychotics elicits regionally distinct patterns of Fos expression in the rat brain. Stimulation of oxytocin (OXY) and vasopressin (AVP) release in the hypothalamic paraventricular (PVN) and supraoptic (SON) nuclei indicates that antipsychotics may play a role in autonomic, neuroendocrine, and behavioral processes. This study was focused to reveal the responsiveness of hypothalamic OXY- and AVP- producing magnocellular neurons, in terms of quantitative and topographical distinctions, to antipsychotics displaying different pharmacological profiles. Naive male Wistar rats were injected intraperitoneally with haloperidol (1 mg/kg), clozapine (30 mg/kg), olanzapine (30 mg/kg), risperidone (2mg/kg), and vehicle (5% chremophor) and were sacrificed 60 min later by a fixative. Fos, Fos/OXY, and Fos/AVP labelings were visualized by immunohistochemistry in the SON, 5 accessory (ACS) cell groups, and 4 distinct PVN subdivisions using a computerized light microscope. Most apparent activation of single Fos, Fos/OXY, and Fos/AVP cells was induced by clozapine and olanzapine; effects of risperidone and haloperidol were substantially lower; no colocalizations were revealed in naive or vehicle treated control rats. The data indicate the existence of a substantial diversity in the stimulatory effect of the selected antipsychotics on quantity of Fos, Fos/OXY, and Fos/AVP immunostainings with the preferential action of the atypicals clozapine over olanzapine and little effects of risperidone and haloperidol. Variabilities in Fos distribution in the PVN, SON, and ACS induced by antipsychotics may be helpful to understand more precisely the extent of their extra-forebrain actions with possible presumption of their functional impact and side effect consequences.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Altered Fos expression in neural pathways underlying cue-elicited drug seeking in the rat. 15813948

    Cocaine treatment paired with environmental cues establishes a conditioned place preference for that environment. Following expression of this preference, rats show elevated levels of immediate early genes (e.g. c-fos) in the prelimbic cortex (PrL), basolateral amygdala complex (BLC) and nucleus accumbens core (NAcc) compared to drug-unpaired controls. The PrL and BLC are reciprocally connected and both project to the NAcc. Together with the immediate early gene findings, these connections suggest the regions interact as a circuit contributing to cue-elicited drug seeking. To study this circuit, we iontophoresed Fluorogold (FG) into one brain region and assessed colocalization of FG with place preference-induced Fos in the others. Following FG iontophoresis in either the PrL or NAcc, more BLC cells double-labelled for Fos and FG were found in drug-paired than unpaired animals. Following FG iontophoresis in either the BLC or NAcc, no differences were found in the absolute number of PrL Fos/FG cells. This pattern of colocalization suggests that exposure to cocaine-associated cues leads to greater activation of the BLC's efferents to both the PrL and NAcc, while PrL output to the NAcc and BLC is unaffected in IEG expression. These results complement recent findings that suggested attenuated PrL output during place preference expression. Our findings support the view that the BLC, rather than the PrL, provides significant excitatory driving to the NAcc during cue-elicited drug seeking.
    Document Type:
    Reference
    Product Catalog Number:
    AB153