Millipore Sigma Vibrant Logo
 

frasco


778 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (778)
Site Content (0)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • A comparative study of alpha-dystroglycan glycosylation in dystroglycanopathies suggests that the hypoglycosylation of alpha-dystroglycan does not consistently correlate ... 18691338

    Hypoglycosylation of alpha-dystroglycan underpins a subgroup of muscular dystrophies ranging from congenital onset of weakness, severe brain malformations and death in the perinatal period to mild weakness in adulthood without brain involvement. Mutations in six genes have been identified in a proportion of patients. POMT1, POMT2 and POMGnT1 encode for glycosyltransferases involved in the mannosylation of alpha-dystroglycan but the function of fukutin, FKRP and LARGE is less clear. The pathological hallmark is reduced immunolabeling of skeletal muscle with antibodies recognizing glycosylated epitopes on alpha-dystroglycan. If the common pathway of these conditions is the hypoglycosyation of alpha-dystroglycan, one would expect a correlation between clinical severity and the extent of hypoglycosylation. By studying 24 patients with mutations in these genes, we found a good correlation between reduced alpha-dystroglycan staining and clinical course in patients with mutations in POMT1, POMT2 and POMGnT1. However, this was not always the case in patients with defects in fukutin and FKRP, as we identified patients with mild limb-girdle phenotypes without brain involvement with profound depletion of alpha-dystroglycan. These data indicate that it is not always possible to correlate clinical course and alpha-dystroglycan labeling and suggest that there might be differences in alpha-dystroglycan processing in these disorders.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1922
    Product Catalog Name:
    Anti-Laminin α2 Antibody, clone 5H2
  • Involvement of 70-kD heat-shock proteins in peroxisomal import. 8195287

    This report describes the involvement of 70-kD heat-shock proteins (hsp70) in the import of proteins into mammalian peroxisomes. Employing a microinjection-based assay (Walton, P. A., S. J. Gould, J. R. Feramisco, and S. Subramani. 1992. Mol. Cell Biol. 12:531-541), we demonstrate that proteins of the hsp70 family were associated with proteins being imported into the peroxisomal matrix. Import of peroxisomal proteins could be inhibited by coinjection of antibodies directed against the constitutive hsp70 proteins (hsp73). In a permeabilized-cell assay (Wendland and Subramani. 1993. J. Cell Biol. 120:675-685), antibodies directed against hsp70 proteins were shown to inhibit peroxisomal protein import. Inhibition could be overcome by the addition of exogenous hsp70 proteins. Purified rat liver peroxisomes were shown to have associated hsp70 proteins. The amount of associated hsp70 was increased under conditions of peroxisomal proliferation. Furthermore, proteinase protection assays indicated that the hsp70 molecules were located on the outside of the peroxisomal membrane. Finally, the process of heat-shocking cells resulted in a considerable delay in the import of peroxisomal proteins. Taken together, these results indicate that heat-shock proteins of the cytoplasmic hsp70 family are involved in the import of peroxisomal proteins.
    Document Type:
    Reference
    Product Catalog Number:
    06-1037
  • Targeted deletion of protein kinase C lambda reveals a distribution of functions between the two atypical protein kinase C isoforms. 15322187

    Protein kinase C lambda (PKClambda) is an atypical member of the PKC family of serine/threonine kinases with high similarity to the other atypical family member, PKCzeta. This similarity has made it difficult to determine specific roles for the individual atypical isoforms. Both PKClambda and PKCzeta have been implicated in the signal transduction, initiated by mediators of innate immunity, that culminates in the activation of MAPKs and NF-kappaB. In addition, work from invertebrates shows that atypical PKC molecules play a role in embryo development and cell polarity. To determine the unique functions of PKClambda, mice deficient for PKClambda were generated by gene targeting. The ablation of PKClambda results in abnormalities early in gestation with lethality occurring by embryonic day 9. The role of PKClambda in cytokine-mediated cellular activation was studied by making mouse chimeras from PKClambda-deficient embryonic stem cells and C57BL/6 or Rag2-deficient blastocysts. Cell lines derived from these chimeric animals were then used to dissect the role of PKClambda in cytokine responses. Although the mutant cells exhibited alterations in actin stress fibers and focal adhesions, no other phenotypic differences were noted. Contrary to experiments using dominant interfering forms of PKClambda, mutant cells responded normally to TNF, serum, epidermal growth factor, IL-1, and LPS. In addition, no abnormalities were found in T cell development or T cell activation. These data establish that, in vertebrates, the two disparate functions of atypical PKC molecules have been segregated such that PKCzeta mediates signal transduction of the innate immune system and PKClambda is essential for early embryogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    07-264
  • Ethanol-mediated facilitation of AMPA receptor function in the dorsomedial striatum: implications for alcohol drinking behavior. 23100433

    We found previously that acute ex vivo as well as repeated cycles of in vivo ethanol exposure and withdrawal, including excessive voluntary consumption of ethanol, produces a long-lasting increase in the activity of NR2B-containing NMDA receptors (NR2B-NMDARs) in the dorsomedial striatum (DMS) of rats (Wang et al., 2010a). Activation of NMDARs is required for the induction of long-term potentiation (LTP) of AMPA receptor (AMPAR)-mediated synaptic response. We therefore examined whether the ethanol-mediated upregulation of NMDAR activity alters the induction of LTP in the DMS. We found that ex vivo acute exposure of striatal slices to, and withdrawal from, ethanol facilitates the induction of LTP in DMS neurons, which is abolished by the inhibition of NR2B-NMDARs. We also report that repeated systemic administration of ethanol causes an NR2B-NMDAR-dependent facilitation of LTP in the DMS. LTP is mediated by the insertion of AMPAR subunits into the synaptic membrane, and we found that repeated systemic administration of ethanol, as well as cycles of excessive ethanol consumption and withdrawal, produced a long-lasting increase in synaptic localization of the GluR1 and GluR2 subunits of AMPARs in the DMS. Importantly, we report that inhibition of AMPARs in the DMS attenuates operant self-administration of ethanol, but not of sucrose. Together, our data suggest that aberrant synaptic plasticity in the DMS induced by repeated cycles of ethanol exposure and withdrawal contributes to the molecular mechanisms underlying the development and/or maintenance of excessive ethanol consumption.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Caloric restriction of rhesus monkeys lowers oxidative damage in skeletal muscle. 10973932

    In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We used immunogold electron microscopic (EM) techniques with antibodies raised against 4-hydroxy-2-nonenal (HNE) -modified proteins, dinitrophenol, and nitrotyrosine to quantify and localize the age-dependent accrual of oxidative damage in rhesus monkey vastus lateralis skeletal muscle. Using immunogold EM analysis of muscle from rhesus monkeys ranging in age from 2 to 34 years old, a fourfold maximal increase in levels of HNE-modified proteins was observed. Likewise, carbonyl levels increased approximately twofold with aging. Comparing 17- to 23-year-old normally fed to age-matched monkeys subjected to CR for 10 years, levels of HNE-modified proteins, carbonyls, and nitrotyrosine in skeletal muscle from the CR group were significantly less than control group values. Oxidative damage largely localized to myofibrils, with lesser labeling in other subcellular compartments. Accumulation of lipid peroxidation-derived aldehydes, such as malondialdehyde and 4-hydroxy-2-alkenals, and protein carbonyls were measured biochemically and confirmed the morphological data. Our study is the first to quantify morphologically and localize the age-dependent accrual of oxidative damage in mammalian skeletal muscle and to demonstrate that oxidative damage in primates is lowered by CR.
    Document Type:
    Reference
    Product Catalog Number:
    06-284
    Product Catalog Name:
    Anti-Nitrotyrosine Antibody
  • Cerebral cortex demyelination and oligodendrocyte precursor response to experimental autoimmune encephalomyelitis. 21679768

    Experimentally induced autoimmune encephalomyelitis (EAE) in mice provides an animal model that shares many features with human demyelinating diseases such as multiple sclerosis (MS). To what extent the cerebral cortex is affected by the process of demyelination and how the corollary response of the oligodendrocyte lineage is explicated are still not completely known aspects of EAE. By performing a detailed in situ analysis of expression of myelin and oligodendrocyte markers we have identified areas of subpial demyelination in the cerebral cortex of animals with conventionally induced EAE conditions. On EAE-affected cerebral cortices, the distribution and relative abundance of cells of the oligodendrocyte lineage were assessed and compared with control mouse brains. The analysis demonstrated that A2B5(+) glial restricted progenitors (GRPs) and NG2(+)/PDGFR-α(+) oligodendrocyte precursor cells (OPCs) were increased in number during early disease, 20 days post MOG immunization, whereas in the late disease, 39 days post-immunization, they were strongly diminished, and there was an accompanying reduction in NG2(+)/O4(+) pre-oligodendrocytes and GST-π mature oligodendrocytes. These results, together with the observed steady-state amount of NG2(-)/O4(+) pre-myelinating oligodendrocytes, suggested that oligodendroglial precursors attempted to compensate for the progressive loss of myelin, although these cells appeared to fail to complete the last step of their differentiation program. Our findings confirm that this chronic model of EAE reproduces the features of neocortex pathology in progressive MS and suggest that, despite the proliferative response of the oligodendroglial precursors, the failure to accomplish final differentiation may be a key contributing factor to the impaired remyelination that characterizes these demyelinating conditions.
    Document Type:
    Reference
    Product Catalog Number:
    MAB312R
    Product Catalog Name:
    Anti-A2B5 Antibody, clone A2B5-105
  • The role of fibrin E on the modulation of endothelial progenitors adhesion, differentiation and angiogenic growth factor production and the promotion of wound healing. 21741704

    Severe skin loss constitutes a major unsolved clinical problem worldwide. For this reason, in the last decades there has been a major push towards the development of novel therapeutic approaches to enhance skin wound healing. Neo-vessel formation through angiogenesis is a critical step during the wound healing process. Besides the contribution of pre-existing endothelial cells (EC), endothelial progenitor cells (EPCs) have also been implicated in wound healing acting either by differentiating into EC that incorporate the neo-vessels, or via the production of paracrine factors that improve angiogenesis. Here we tested the importance of different extracellular matrices (ECM) in regulating the angiogenic and wound healing potential of cord blood-derived EPC (CB-EPC). We compared the properties of several ECM and particularly of fibrin fragment E (FbnE) in regulating EPC adhesion, proliferation, differentiation and healing-promotion in vitro and in vivo. Our results show that CB-EPCs have increased adhesion and endothelial differentiation when plated on FbnE compared to collagens, fibronectin or fibrin. Using integrin neutralizing antibodies, we show that CB-EPC adhesion to FbnE is mediated by integrin ?5?1. Gene expression analysis of CB-EPCs plated on different substrates revealed that CB-EPC grown on FbnE shows increased expression of paracrine factors such as VEGF-A, TGF-?1, SDF-1, IL-8 and MIP-1?. Accordingly, conditioned media from CB-EPC grown on FbnE induced EC tube formation and monocyte migration in vitro. To test the wound healing effects of FbnE in vivo we used an FbnE enriched scaffold in a cutaneous wound healing mouse model. In accordance with our in vitro data, co-administration of the FbnE enriched scaffold with CB-EPC significantly accelerated wound closure and wound vascularization, compared FbnE enriched scaffold alone or to using collagen-based scaffolds. Our results show that FbnE modulates several CB-EPC properties in vivo and in vitro, and as such promotes wound healing. We suggest the use of FbnE-based scaffolds represents a promising approach to resolve wound healing complications arising from different pathologies.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1952Z
    Product Catalog Name:
    Anti-Integrin α3 Antibody, clone P1B5, azide free
  • Plasminogen activator inhibitors regulate cell adhesion through a uPAR-dependent mechanism. 19472211

    Binding of type-1 plasminogen activator inhibitor (PAI-1) to cell surface urokinase (uPA) promotes inactivation and internalization of adhesion receptors (e.g., urokinase receptor (uPAR), integrins) and leads to cell detachment from a variety of extracellular matrices. In this report, we begin to examine the mechanism of this process. We show that neither specific antibodies to uPA, nor active site inhibitors of uPA, can detach the cells. Thus, cell detachment is not simply the result of the binding of macromolecules to uPA and/or of the inactivation of uPA. We further demonstrate that another uPA inhibitor, protease nexin-1 (PN-1), also stimulates cell detachment in a uPA/uPAR-dependent manner. The binding of both inhibitors to uPA leads to the specific inactivation of the matrix-engaged integrins and the subsequent detachment of these integrins from the underlying extracellular matrix (ECM). This inhibitor-mediated inactivation of integrins requires direct interaction between uPAR and those integrins since cells attached to the ECM through integrins incapable of binding uPAR do not respond to the presence of either PAI-1 of PN-1. Although both inhibitors initiate the clearance of uPAR, only PAI-1 triggers the internalization of integrins. However, cell detachment by PAI-1 or PN-1 does not depend on the endocytosis of these integrins since cell detachment was also observed when clearance of these integrins was blocked. Thus, PAI-1 and PN-1 induce cell detachment through two slightly different mechanisms that affect integrin metabolism. These differences may be important for distinct cellular processes that require controlled changes in the subcellular localization of these receptors.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1992
    Product Catalog Name:
    Anti-Integrin α3β1 Antibody, clone M-KID2
  • Expression of the nerve growth factor receptors TrkA and p75NTR in the visual cortex of the rat: development and regulation by the cholinergic input. 11826120

    Several lines of evidence have shown that nerve growth factor (NGF), the progenitor of the neurotrophin family of growth factors, plays a fundamental role in the developmental plasticity of the rat visual cortex. However, the expression of NGF receptors (NGFRs) TrkA and p75(NTR) and the possible sites of NGF action in the visual cortex remain to be elucidated so far. Using a highly sensitive ECL immunoblot analysis, we have been able to show, in the present study, that the TrkA protein is expressed in the rat visual cortex and that it is developmentally upregulated during the critical period for cortical plasticity. In contrast, the expression level of the low-affinity NGF receptor p75(NTR) seems to remain nearly constant throughout development. In the analysis of possible pathways involved in the regulation of NGFR expression, we found that neither blockade of the visual input nor NGF administration to the visual cortex resulted in a modulation of NGFR levels of expression. On the other hand, the selective destruction of cholinergic afferents to the visual cortex caused a dramatic, but not complete, reduction of the cortical NGFRs, which suggests that these receptors are located on cholinergic terminals predominantly. At the functional level, we found that, after the elimination of the cholinergic afferents to the visual cortex, the NGF-induced increase of both acetylcholine and glutamate release from cortical synaptosomes was strongly impaired. These results indicate that the cholinergic input is an important mediator of visual cortex responsiveness to NGF action.
    Document Type:
    Reference
    Product Catalog Number:
    MAB305
    Product Catalog Name:
    Anti-Choline Acetyltransferase Antibody, clone 1E6
  • Regulation of tolerance to DNA alkylating damage by Dot1 and Rad53 in Saccharomyces cerevisiae. 20674515

    To maintain genomic integrity cells have to respond properly to a variety of exogenous and endogenous factors that produce genome injuries and interfere with DNA replication. DNA integrity checkpoints coordinate this response by slowing cell cycle progression to provide time for the cell to repair the damage, stabilizing replication forks and stimulating DNA repair to restore the original DNA sequence and structure. In addition, there are also mechanisms of damage tolerance, such as translesion synthesis (TLS), which are important for survival after DNA damage. TLS allows replication to continue without removing the damage, but results in a higher frequency of mutagenesis. Here, we investigate the functional contribution of the Dot1 histone methyltransferase and the Rad53 checkpoint kinase to TLS regulation in Saccharomyces cerevisiae. We demonstrate that the Dot1-dependent status of H3K79 methylation modulates the resistance to the alkylating agent MMS, which depends on PCNA ubiquitylation at lysine 164. Strikingkly, either the absence of DOT1, which prevents full activation of Rad53, or the expression of an HA-tagged version of RAD53, which produces low amounts of the kinase, confer increased MMS resistance. However, the dot1Δ rad53-HA double mutant is hypersensitive to MMS and shows barely detectable amounts of activated kinase. Furthermore, moderate overexpression of RAD53 partially suppresses the MMS resistance of dot1Δ. In addition, we show that MMS-treated dot1Δ and rad53-HA cells display increased number of chromosome-associated Rev1 foci. We propose that threshold levels of Rad53 activity exquisitely modulate the tolerance to alkylating damage at least by controlling the abundance of the key TLS factor Rev1 bound to chromatin.
    Document Type:
    Reference
    Product Catalog Number:
    05-724
    Product Catalog Name:
    Anti-Myc Tag Antibody, clone 4A6