Millipore Sigma Vibrant Logo
 

gemäß


52 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (52)
Site Content (0)
Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Sialylated and O-glycosidically linked glycans in prion protein deposits in a case of Gerstmann-Sträussler-Scheinker disease. 20667006

    Prion diseases are caused by an abnormal form of the prion protein (PrP(Sc)). We identified, with lectins, post-translational modifications of brain proteins due to glycosylation in a Gerstmann-Sträussler-Scheinker (GSS) patient. The lectin Amaranthus leucocarpus (ALL), specific for mucin type O-glycosylated structures (Galß1,3 GalNAc?1,0 Ser/Thr or GalNAc?1,0 Ser/Thr), and Sambucus nigra agglutinin (SNA), specific for Neu5Ac?2,6 Gal/GalNAc, showed positive labeling in all the prion deposits and in the core of the PrP(Sc) deposits, respectively, indicating specific distribution of O-glycosylated and sialylated structures. Lectins from Maackia amurensis (MAA, Neu5Ac?2,3), Macrobrachium rosenbergii (MrL, Neu5,9Ac2-specific) and Arachis hypogaea (PNA, Gal-specific) showed low staining of prion deposits. Immunohistochemistry colocalization with prion antibody indicated that all lectins stained prion protein deposits. These results show that specific modifications in the glycosylation pattern are closely related to the hallmark lesions and might be an early event in neuronal degeneration in GSS disease.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1562
    Product Catalog Name:
    Anti-Prion Protein Antibody, a.a. 109-112, clone 3F4
  • Histological and ultrastructural characterization of interfascicular neurons in the rat anterior commissure. 11897092

    The histological, connectional, and ultrastructural characteristics of a peculiar neuron type in the rat anterior commissure (AC) are described. Since these cells are located among the axonal fascicles of the rostral and caudal parts of the AC, they are termed interfascicular neurons (IFN). In rapid-Golgi sections IFNs appeared in two forms: internuncial (i.e., short axon) and projection neurons (i.e., long axon). The axon of the internuncial neurons terminates upon neighboring IFNs. The projection neurons give rise to an axon which is either incorporated into commissural fibers or ramifies into 12-26 collaterals running laterally in opposite directions along commissural axons. Immunohistochemistry to microtubule-associated protein 2 combined with confocal microscopy showed that IFNs display short varicose dendrites which remain confined to the domain of the AC. The neuronal nature of IFNs was confirmed with the electron microscope on the basis of distinctive organelles and the presence of synaptic inputs. Small areas of neuropil surround some IFNs. These areas are composed of proximal dendrites, terminal axons, axo-shaft and axo-spinous synapses. Because IFNs with their afferents and efferents constitute sufficient elements to integrate neural inputs, it is proposed that they may be involved in processing nerve impulses proceeding from the bilateral cerebral structures connected by the AC.
    Document Type:
    Reference
    Product Catalog Number:
    MAB378
    Product Catalog Name:
    Anti-MAP2A Antibody, AP20
  • The tumor suppressor ING1 contributes to epigenetic control of cellular senescence. 21078114

    Cellular senescence is an effective tumor-suppressive mechanism that causes a stable proliferative arrest in cells with potentially oncogenic alterations. Here, we have investigated the role of the p33ING1 tumor suppressor in the regulation of cellular senescence in human primary fibroblasts. We show that p33ING1 triggers a senescent phenotype in a p53-dependent fashion. Also, endogenous p33ING1 protein accumulates in chromatin in oncogene-senescent fibroblasts and its silencing by RNA interference impairs senescence triggered by oncogenes. Notably, the ability to induce senescence is lost in a mutant version of p33ING1 present in human tumors. Using specific point mutants, we further show that recognition of the chromatin mark H3K4me3 is essential for induction of senescence by p33ING1. Finally, we demonstrate that ING1-induced senescence is associated to a specific genetic signature with a strong representation of chemokine and cytokine signaling factors, which significantly overlaps with that of oncogene-induced senescence. In summary, our results identify ING1 as a critical epigenetic regulator of cellular senescence in human fibroblasts and highlight its role in control of gene expression in the context of this tumor-protective response.
    Document Type:
    Reference
    Product Catalog Number:
    05-740
    Product Catalog Name:
    Anti-phospho-ATM (Ser1981) Antibody, clone 10H11.E12
  • Rad and Rad-related GTPases interact with calmodulin and calmodulin-dependent protein kinase II. 9115241

    Members of the Rad family of GTPases (including Rad, Gem, and Kir) possess several unique features of unknown function in comparison to other Ras-like proteins, with major N-terminal and C-terminal extensions, a lack of typical prenylation motifs, and several non-conservative changes in the sequence of the GTP binding domain. Here we show that Rad and Gem bind to calmodulin (CaM)-Sepharose in vitro in a calcium-dependent manner and that Rad can be co-immunoprecipitated with CaM in C2C12 cells. The interaction is influenced by the guanine nucleotide binding state of Rad with the GDP-bound form exhibiting 5-fold better binding to CaM than the GTP-bound protein. In addition, the dominant negative mutant of Rad (S105N) which binds GDP, but not GTP, exhibits enhanced binding to CaM in vivo when expressed in C2C12 cells. Peptide competition studies and expression of deletion mutants of Rad localize the binding site for CaM to residues 278-297 at the C terminus of Rad. This domain contains a motif characteristic of a calmodulin-binding region, consisting of numerous basic and hydrophobic residues. In addition, we have identified a second potential regulatory domain in the extended N terminus of Rad which, when removed, decreases Rad protein expression but increases the binding of Rad to CaM. The ability of Rad mutants to bind CaM correlates with their localization in cytoskeletal fractions of C2C12 cells. Immunoprecipitates of calmodulin-dependent protein kinase II, the cellular effector of Ca2+-calmodulin, also contain Rad, and in vitro both Rad and Gem can serve as substrates for this kinase. Thus, the Rad family of GTP-binding proteins possess unique characteristics of binding CaM and calmodulin-dependent protein kinase II, suggesting a role for Rad-like GTPases in calcium activation of serine/threonine kinase cascades.
    Document Type:
    Reference
    Product Catalog Number:
    05-173
    Product Catalog Name:
    Anti-Calmodulin Antibody
  • Overexpression of survival motor neuron improves neuromuscular function and motor neuron survival in mutant SOD1 mice. 24210254

    Spinal muscular atrophy results from diminished levels of survival motor neuron (SMN) protein in spinal motor neurons. Low levels of SMN also occur in models of amyotrophic lateral sclerosis (ALS) caused by mutant superoxide dismutase 1 (SOD1) and genetic reduction of SMN levels exacerbates the phenotype of transgenic SOD1(G93A) mice. Here, we demonstrate that SMN protein is significantly reduced in the spinal cords of patients with sporadic ALS. To test the potential of SMN as a modifier of ALS, we overexpressed SMN in 2 different strains of SOD1(G93A) mice. Neuronal overexpression of SMN significantly preserved locomotor function, rescued motor neurons, and attenuated astrogliosis in spinal cords of SOD1(G93A) mice. Despite this, survival was not prolonged, most likely resulting from SMN mislocalization and depletion of gems in motor neurons of symptomatic mice. Our results reveal that SMN upregulation slows locomotor deficit onset and motor neuron loss in this mouse model of ALS. However, disruption of SMN nuclear complexes by high levels of mutant SOD1, even in the presence of SMN overexpression, might limit its survival promoting effects in this specific mouse model. Studies in emerging mouse models of ALS are therefore warranted to further explore the potential of SMN as a modifier of ALS.
    Document Type:
    Reference
    Product Catalog Number:
    MAB360
    Product Catalog Name:
    Anti-Glial Fibrillary Acidic Protein Antibody, clone GA5
  • A phosphorylated, carboxy-terminal fragment of beta-amyloid precursor protein localizes to the splicing factor compartment. 14722157

    Beta-amyloid precursor protein (APP) is implicated in the pathobiology of Alzheimer's disease (AD). To gain insight into its function, we have investigated the proteolytic processing and post-translational modification of APP in relation to its intracellular traffic and localization. The proteolytic processing that generates the amyloid beta-peptide (Abeta) also releases into the cytoplasm the carboxy-terminal fragment of APP, Cgamma. Using the catecholaminergic cell line, CAD, and an antibody to a form of APP that is phosphorylated at Thr668 (pAPP; numbering for APP695), we show that a phosphorylated, carboxy-terminal fragment of APP, probably Cgamma, is present in the nucleus, where it localizes to subnuclear particles. The labeling with anti-pAPP antibody co-localizes with proteins that define the splicing factor compartment (SFC) [e.g. the small nuclear ribonucleoprotein (snRNP), U2B, and serine/arginine-rich (SR) proteins], but is excluded from the coiled bodies and the gems. This distribution of pAPP epitopes was found in CAD cells independent of their state of differentiation, as well as in primary cortical neurons, epithelial cells and fibroblasts. We further show that exogenously expressed Cgamma becomes phosphorylated, and distributes throughout the cell. A fraction of this Cgamma is translocated into the nucleus, where it co-localizes with endogenous pAPP epitopes. Finally, we show that the APP binding, scaffolding protein, Fe65 co-localizes with pAPP epitopes and with expressed Cgamma at intranuclear speckles. These results suggest that phosphorylated Cgamma accumulates at the SFC. Thus, APP may play a role in pre-mRNA splicing, and Fe65 and APP phosphorylation may regulate this function.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Herpes simplex virus type 1 induces nuclear accumulation of hyperphosphorylated tau in neuronal cells. 22252837

    Herpes simplex virus type 1 (HSV-1) is a neurotropic virus that remains latent in host neurons. Viral DNA replication is a highly structured process in which the redistribution of nuclear proteins plays an important role. Although tau is most widely known as a microtubule-associated protein found in a hyperphosphorylated state in the brains of patients with Alzheimer's disease (AD), this protein has also been detected at other sites such as the nucleolus. Here, we establish that HSV-1 infection gives rise to an increase in tau phosphorylation and that hyperphosphorylated tau accumulates in the nucleus, forming defined structures in HSV-1-infected neuronal cells reminiscent of the common sites of viral DNA replication. When tau expression in human neuroblastoma cells was specifically inhibited using an adenoviral vector expressing a short hairpin RNA to tau, viral DNA replication was not affected, indicating that tau is not required for HSV-1 growth in neuronal cells. Given that HSV-1 is considered a risk factor for AD, our results suggest a new way in which to understand the relationships between HSV-1 infection and the pathogenic mechanisms leading to AD.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3420
    Product Catalog Name:
    Anti-Tau-1 Antibody, clone PC1C6
  • Postnatal maturation of the gastrointestinal tract: a functional and immunohistochemical study in the guinea-pig ileum at weaning. 19819299

    Gastrointestinal motility is mainly controlled by the myenteric plexus. The longitudinal muscle-myenteric plexus (LMMP) preparation from the guinea-pig ileum is the best characterised adult gastrointestinal preparation; it has also been studied in old and neonatal animals, but not at weaning, when milk is substituted with the food typical of adult animals. We used LMMP preparations from weanling and adult guinea-pigs to study different functional parameters and immunohistochemically identified subpopulations of myenteric neurones, including the excitatory motor neurones to the longitudinal muscle (LM-EMN). Excitatory stimuli (low-frequency electrical stimulation, acetylcholine, substance P, and naloxone in morphine-tolerant preparations) produced similar responses in weanling and adult guinea-pigs. The endogenous cannabinoid anandamide, but not the synthetic cannabinoid agonist WIN 55,212-2 or the opioid morphine, inhibited the electrically stimulated twitches less efficaciously, and in vitro tolerance to morphine was also lower in weanling compared to adult animals. The packing densities of the calbindin-immunoreactive neurones (sensory neurones) and of neurones immunoreactive to both calretinin (CR) and neurofilament triplet protein (NFT; ascending interneurones) were slightly but significantly lower in weanling animals, whereas those of the neurones immunoreactive to CR but not NFT (LM-EMN) or immunoreactive to nitric oxide synthase (mainly inhibitory motor neurones) were comparable to the adult. Although guinea-pigs are relatively mature and can even ingest solid food at birth, their myenteric plexus is still not fully mature at the standard time of weaning. The nutritional, behavioural and environmental changes associated with weaning may be essential to attain full maturation of the myenteric plexus and gastrointestinal motility.
    Document Type:
    Reference
    Product Catalog Number:
    AB1529
    Product Catalog Name:
    Anti-Nitric Oxide Synthase I Antibody
  • Glycosylation affects translocation of integrin, Src, and caveolin into or out of GEM. 10873579

    Endogenous GM3 synthesis and full N-glycosylation in membrane receptors occurred in 4-epimerase-less ldlD (Krieger's CHO mutant) cells cultured in Gal-containing medium, whereby components of detergent-insoluble, low-density, buoyant membrane fraction, termed glycolipid-enriched microdomain (GEM), varied significantly by translocation into or out of GEM. Integrins alpha3 and alpha5 were translocated into GEM in the presence of 0.5 or 0.25% Triton X-100, particularly in the absence of Gal, whereby integrins are underglycosylated and GlcCer is the major glycolipid component in GEM. Src family kinase was translocated into and enriched in GEM fractions when prepared in 0.5 or 0.25% Triton X-100 from cells grown in Gal-containing medium, whereby GM3 synthesis is induced. In contrast, caveolin is highly enriched in GEM when GM3 synthesis does not occur, and is translocated into high-density membrane fraction when GM3 synthesis occurs. The results suggest that levels of key molecules controlling cell adhesion and signaling are defined by translocation into or out of GEM, which depends on glycosylation state.
    Document Type:
    Reference
    Product Catalog Number:
    AB1949
  • Symmetrical dimethylarginine methylation is required for the localization of SMN in Cajal bodies and pre-mRNA splicing. 12486110

    The nuclear structures that contain symmetrical dimethylated arginine (sDMA)-modified proteins and the role of this posttranslational modification is unknown. Here we report that the Cajal body is a major epitope in HeLa cells for an sDMA-specific antibody and that coilin is an sDMA-containing protein as analyzed by using the sDMA-specific antibody and matrix-assisted laser desorption ionization time of flight mass spectrometry. The methylation inhibitor 5'-deoxy-5'-methylthioadenosine reduces the levels of coilin methylation and causes the appearance of SMN-positive gems. In cells devoid of Cajal bodies, such as primary fibroblasts, sDMA-containing proteins concentrated in speckles. Cells from a patient with spinal muscular atrophy, containing low levels of the methyl-binding protein SMN, localized sDMA-containing proteins in the nucleoplasm as a discrete granular pattern. Splicing reactions are efficiently inhibited by using the sDMA-specific antibody or by using hypomethylated nuclear extracts, showing that active spliceosomes contain sDMA polypeptides and suggesting that arginine methylation is important for efficient pre-mRNA splicing. Our findings support a model in which arginine methylation is important for the localization of coilin and SMN in Cajal bodies.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple