Millipore Sigma Vibrant Logo
 

immunoglobulin-heavy-variable-3-35-(non-functional)


43 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (43)
Site Content (0)
Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Characterization of multifunctional nanosystems based on the avidin-nucleic acid interaction as signal enhancers in immuno-detection. 22414051

    The Avidin-Nucleic-Acids-Nano-Assembly (ANANAS) is a kind of soft poly avidin nanoparticle originating from the high affinity interaction between avidin and the nucleic acids. In this work we investigated the possibility of transforming ANANAS cores into stoichiometrically controlled multifunctional nanoparticles through a one-pot procedure, and we measured in a quantitative way their ability to work as reagents for enhanced immunodiagnostic detection. Initially, we measured the ANANAS loading capability for biotinylated proteins of different nature. About 200 molecules of biotin-horseradish-peroxidase (40KDa b-HRP) and 60 molecules of biotin-immunoglobulin-G (150KDa b-IgG) could be accommodated onto each nanoparticle, showing that steric limitations dictate the number of loadable entities. Stoichiometrically controlled functional assemblies were generated by mixing core particles with subsaturating amounts of b-HRP and b-IgG. When applied as detection reagents in an Enzyme-Linked-ImmunoSorbed-Assay (ELISA), these assemblies were up to two-orders of magnitude more sensitive than commercial HRP-based reagents. Assemblies of different composition displayed different efficacy, indicating that the system functionality can be fine-tuned. Within-assay variability (CV%), measured to assess if the assembly procedure is reproducible, was within 10%. Stability experiments demonstrated that the functionalyzed assemblies are stable in solution for more than one week. In principle, any biotinylated function can be loaded onto the core particle, whose high loading capacity and tunability may open the way toward further application in biomedicine.
    Document Type:
    Reference
    Product Catalog Number:
    AP124P
    Product Catalog Name:
    Goat Anti-Mouse IgG Antibody, Peroxidase Conjugated, H+L
  • The ectodomain of a novel member of the immunoglobulin subfamily related to the poliovirus receptor has the attributes of a bona fide receptor for herpes simplex virus ty ... 9811737

    We report on the functional cloning of a hitherto unknown member of the immunoglobulin (Ig) superfamily selected for its ability to confer susceptibility to herpes simplex virus (HSV) infection on a highly resistant cell line (J1.1-2 cells), derived by exposure of BHKtk- cells to a recombinant HSV-1 expressing tumor necrosis factor alpha (TNF-alpha). The sequence of herpesvirus Ig-like receptor (HIgR) predicts a transmembrane protein with an ectodomain consisting of three cysteine-bracketed domains, one V-like and two C-like. HIgR shares its ectodomain with and appears to be an alternative splice variant of the previously described protein PRR-1 (poliovirus receptor-related protein). Both HIgR and PRR-1 conferred on J1.1-2 cells susceptibility to HSV-1, HSV-2, and bovine herpesvirus 1. The viral ligand of HIgR and PRR-1 is glycoprotein D, a constituent of the virion envelope long known to mediate viral entry into cells through interaction with cellular receptor molecules. Recently, PRR-1, renamed HveC (herpesvirus entry mediator C), and the related PRR-2, renamed HveB, were reported to mediate the entry of HSV-1, HSV-2, and bovine herpesvirus 1, and the homologous poliovirus receptor was reported to mediate the entry of pseudorabies virus (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618-1620, 1998; M. S. Warner, R. J. Geraghty, W. M. Martinez, R. I. Montgomery, J. C. Whitbeck, R. Xu, R. J. Eisenberg, G. H. Cohen, and P. G. Spear, Virology 246:179-189, 1998). Here we further show that HIgR or PRR-1 proteins detected by using a monoclonal antibody to PRR-1 are widely distributed among human cell lines susceptible to HSV infection and commonly used for HSV studies. The monoclonal antibody neutralized virion infectivity in cells transfected with HIgR or PRR-1 cDNA, as well as in the human cell lines, indicating a direct interaction of virions with the receptor molecule, and preliminarily mapping this function to the ectodomain of HIgR and PRR-1. Northern blot analysis showed that HIgR or PRR-1 mRNAs were expressed in human tissues, with the highest expression being detected in nervous system samples. HIgR adds a novel member to the cluster of Ig superfamily members able to mediate the entry of alphaherpesviruses into cells. The wide distribution of HIgR or PRR-1 proteins among human cell lines susceptible to HSV infection, coupled with the neutralizing activity of the antibody in the same cells, provides direct demonstration of the actual use of this cluster of molecules as HSV-1 and HSV-2 entry receptors in human cell lines. The high level of expression in samples from nervous system makes the use of these proteins in human tissues very likely. This cluster of molecules may therefore be considered to constitute bona fide receptors for HSV-1 and HSV-2.
    Document Type:
    Reference
    Product Catalog Number:
    MABT61
    Product Catalog Name:
    Anti-Nectin-1/PVRL1 (CD111) Antibody, clone R1.302
  • Interaction between the immunoglobulin heavy chain 3' regulatory region and the IgH transcription unit during B cell differentiation. 21945019

    The immunoglobulin heavy (Igh) chain locus is subject to precisely regulated processes, such as variable region gene formation through recombination of variable (V(H)), diversity (D(H)), and joining (J(H)) segments, class switching and somatic hypermutation. The 3' regulatory region (3' RR) is a key regulator of the Igh locus, and, as revealed by deletions in mouse plasma cell lines and mice, is required for IgH expression as well as class switching. One of the mechanisms by which the 3' RR regulates its targets is through long-range physical interactions. Such interactions between elements of the 3' RR and a target site in the IgH transcription unit have been detected in plasma cells, and in resting and switching B cells, where they have been associated with IgH expression and class switching, respectively. Here, we report that lentiviral shRNA knockdown of transcription factors, CTCF, Oct-2, or OBF-1/OCA-B, had no discernible defects in loop formation or H chain expression in plasma cells. J(H)-3' RR interactions in pre-B cell lines were specifically associated with IgH expression. J(H)-3' RR interactions were not detected in either Pax5-deficient or RAG-deficient pro-B cells, but were apparent in an Abelson-derived pro-B cell line. These observations imply that the 3' RR has different loop interactions with target Igh sequences at different stages of B cell development and Igh regulation.
    Document Type:
    Reference
    Product Catalog Number:
    07-729
    Product Catalog Name:
    Anti-CTCF Antibody
  • Loss of Bright/ARID3a function promotes developmental plasticity. 20680960

    B-cell regulator of immunoglobulin heavy chain transcription (Bright)/ARID3a, an A+T-rich interaction domain protein, was originally discovered in B lymphocyte lineage cells. However, expression patterns and high lethality levels in knockout mice suggested that it had additional functions. Three independent lines of evidence show that functional inhibition of Bright results in increased developmental plasticity. Bright-deficient cells from two mouse models expressed a number of pluripotency-associated gene products, expanded indefinitely, and spontaneously differentiated into cells of multiple lineages. Furthermore, direct knockdown of human Bright resulted in colonies capable of expressing multiple lineage markers. These data suggest that repression of this single molecule confers adult somatic cells with new developmental options.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • A spontaneous mutation in contactin 1 in the mouse. 22242131

    Mutations in the gene encoding the immunoglobulin-superfamily member cell adhesion molecule contactin1 (CNTN1) cause lethal congenital myopathy in human patients and neurodevelopmental phenotypes in knockout mice. Whether the mutant mice provide an accurate model of the human disease is unclear; resolving this will require additional functional tests of the neuromuscular system and examination of Cntn1 mutations on different genetic backgrounds that may influence the phenotype. Toward these ends, we have analyzed a new, spontaneous mutation in the mouse Cntn1 gene that arose in a BALB/c genetic background. The overt phenotype is very similar to the knockout of Cntn1, with affected animals having reduced body weight, a failure to thrive, locomotor abnormalities, and a lifespan of 2-3 weeks. Mice homozygous for the new allele have CNTN1 protein undetectable by western blotting, suggesting that it is a null or very severe hypomorph. In an analysis of neuromuscular function, neuromuscular junctions had normal morphology, consistent with previous studies in knockout mice, and the muscles were able to generate appropriate force when normalized for their reduced size in late stage animals. Therefore, the Cntn1 mutant mice do not show evidence for a myopathy, but instead the phenotype is likely to be caused by dysfunction in the nervous system. Given the similarity of CNTN1 to other Ig-superfamily proteins such as DSCAMs, we also characterized the expression and localization of Cntn1 in the retinas of mutant mice for developmental defects. Despite widespread expression, no anomalies in retinal anatomy were detected histologically or using a battery of cell-type specific antibodies. We therefore conclude that the phenotype of the Cntn1 mice arises from dysfunction in the brain, spinal cord or peripheral nervous system, and is similar in either a BALB/c or B6;129;Black Swiss background, raising a possible discordance between the mouse and human phenotypes resulting from Cntn1 mutations.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Epigenetic silencing of the immunoglobulin heavy-chain gene in classical Hodgkin lymphoma-derived cell lines contributes to the loss of immunoglobulin expression. 15284123

    Immunoglobulin production is impaired in Hodgkin and Reed-Sternberg (HRS) cells of classical Hodgkin lymphoma (cHL) in spite of functional clonal rearrangements. The presence of "crippling" mutations in coding and regulatory regions, as well as down-regulation of B-cell-specific transcription factors, has been suggested as a potential reason for the lack of immunoglobulin (Ig) chain gene transcription. We have investigated the impact of epigenetic silencing in suppressing Ig heavy (H)-chain expression. Chromatin immunoprecipitation (ChIP) was used to analyze transcription factor binding to octamer motifs present in the IgH regulatory regions. Transcription factors were bound to these motifs in control cell lines, however, they were absent in the cHL-derived cell lines KMH2, L1236, and L428. Ectopic expression of octamer-binding transcription factor (Oct2) and/or B-cell Oct binding protein/Oct-binding factor (BOB.1/OBF.1) did not result in any measurable binding to these sites. Increased histone 3 Lysine 9 (H3-K9) methylation was observed in the promoter region of the IgH locus in L428 and L1236 cells. This is a typical feature of heterochromatic, transcriptionally silent regions. Treatment of cHL-derived cell lines with the DNA demethylating agent 5-aza-2'-deoxycytidine (5-aza-dC) partially reactivated IgH transcription and affected chromatin modifications. Our results suggest an important role of epigenetic silencing in the inhibition of IgH transcription in HRS cells.
    Document Type:
    Reference
    Product Catalog Number:
    07-212
    Product Catalog Name:
    Anti-dimethyl-Histone H3 (Lys9) Antibody
  • Rapid and Efficient Generation of Transgene-Free iPSC from a Small Volume of Cryopreserved Blood. 25951995

    Human peripheral blood and umbilical cord blood represent attractive sources of cells for reprogramming to induced pluripotent stem cells (iPSCs). However, to date, most of the blood-derived iPSCs were generated using either integrating methods or starting from T-lymphocytes that have genomic rearrangements thus bearing uncertain consequences when using iPSC-derived lineages for disease modeling and cell therapies. Recently, both peripheral blood and cord blood cells have been reprogrammed into transgene-free iPSC using the Sendai viral vector. Here we demonstrate that peripheral blood can be utilized for medium-throughput iPSC production without the need to maintain cell culture prior to reprogramming induction. Cell reprogramming can also be accomplished with as little as 3000 previously cryopreserved cord blood cells under feeder-free and chemically defined Xeno-free conditions that are compliant with standard Good Manufacturing Practice (GMP) regulations. The first iPSC colonies appear 2-3 weeks faster in comparison to previous reports. Notably, these peripheral blood- and cord blood-derived iPSCs are free of detectable immunoglobulin heavy chain (IGH) and T cell receptor (TCR) gene rearrangements, suggesting they did not originate from B- or T- lymphoid cells. The iPSCs are pluripotent as evaluated by the scorecard assay and in vitro multi lineage functional cell differentiation. Our data show that small volumes of cryopreserved peripheral blood or cord blood cells can be reprogrammed efficiently at a convenient, cost effective and scalable way. In summary, our method expands the reprogramming potential of limited or archived samples either stored at blood banks or obtained from pediatric populations that cannot easily provide large quantities of peripheral blood or a skin biopsy.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5326
    Product Catalog Name:
    Anti-Nestin Antibody, clone 10C2
  • Surfactant protein D (Sp-D) binds to membrane-proximal domain (D3) of signal regulatory protein α (SIRPα), a site distant from binding domain of CD47, while also bindin ... 22511785

    Signal regulatory protein α (SIRPα), a highly glycosylated type-1 transmembrane protein, is composed of three immunoglobulin-like extracellular loops as well as a cytoplasmic tail containing three classical tyrosine-based inhibitory motifs. Previous reports indicate that SIRPα binds to humoral pattern recognition molecules in the collectin family, namely surfactant proteins D and A (Sp-D and Sp-A, respectively), which are heavily expressed in the lung and constitute one of the first lines of innate immune defense against pathogens. However, little is known about molecular details of the structural interaction of Sp-D with SIRPs. In the present work, we examined the molecular basis of Sp-D binding to SIRPα using domain-deleted mutant proteins. We report that Sp-D binds to the membrane-proximal Ig domain (D3) of SIRPα in a calcium- and carbohydrate-dependent manner. Mutation of predicted N-glycosylation sites on SIRPα indicates that Sp-D binding is dependent on interactions with specific N-glycosylated residues on the membrane-proximal D3 domain of SIRPα. Given the remarkable sequence similarity of SIRPα to SIRPβ and the lack of known ligands for the latter, we examined Sp-D binding to SIRPβ. Here, we report specific binding of Sp-D to the membrane-proximal D3 domain of SIRPβ. Further studies confirmed that Sp-D binds to SIRPα expressed on human neutrophils and differentiated neutrophil-like cells. Because the other known ligand of SIRPα, CD47, binds to the membrane-distal domain D1, these findings indicate that multiple, distinct, functional ligand binding sites are present on SIRPα that may afford differential regulation of receptor function.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Nectin4/PRR4, a new afadin-associated member of the nectin family that trans-interacts with nectin1/PRR1 through V domain interaction. 11544254

    Nectins are adhesion molecules that participate in the organization of epithelial and endothelial junctions and serve as receptors for herpes simplex virus entry. They belong to the immunoglobulin superfamily, are homologues of the poliovirus receptor (PVR/CD155), and were also named poliovirus receptor-related (PRR) proteins. We identify a new member of the nectin family named nectin4. Peptide sequences of human and murine nectin4 share 92% identity, and as for other members, the ectodomain is made of three immunoglobulin-like domains of V, C, C types. In contrast to other nectin molecules, detection of nectin4 transcripts is mainly restricted to placenta in human tissues. Expression is broader in mouse, and interestingly nectin4 is detected at days 11, 15, and 17 during murine embryogenesis. Nectin4 interacts with afadin, a F-actin-associated molecule, via its carboxyl-terminal cytoplasmic sequence. Both molecules co-localize at cadherin-based adherens junctions in the MDCKII epithelial cell line. Nectins are homophilic adhesion molecules, and recently heterophilic interactions have been described between nectin3/nectin1 and nectin3/nectin2. We confirmed these trans-interactions and also described nectin3 as the PVR/CD155 ligand. By means of several approaches, we report on the identification of nectin4 as a new ligand for nectin1. First, a soluble chimeric recombinant nectin4 ectodomain (nectin4-Fc) trans-interacts with cells expressing nectin1 but not with cells expressing nectin2, nectin3, or PVR/CD155. Conversely, nectin1-Fc binds to cells expressing nectin4. Second, nectin1-Fc precipitates nectin4 expressed in COS cells. Third, reciprocal in vitro physical interactions were detected between nectin4-Fc and nectin1-Fc. The nectin4-Fc/nectin4-Fc interaction was detected suggesting that nectin4 exhibits both homophilic and heterophilic properties. Using the same approaches we demonstrate, for the first time, that the V domain of nectin1 acts as a major functional region involved in trans-heterointeraction with nectin4 and also nectin3.
    Document Type:
    Reference
    Product Catalog Number:
    MABT64
    Product Catalog Name:
    Anti-Nectin-4/PVRL4 Antibody, clone N4.61
  • CEACAM1 regulates TIM-3-mediated tolerance and exhaustion. 25363763

    T-cell immunoglobulin domain and mucin domain-3 (TIM-3, also known as HAVCR2) is an activation-induced inhibitory molecule involved in tolerance and shown to induce T-cell exhaustion in chronic viral infection and cancers. Under some conditions, TIM-3 expression has also been shown to be stimulatory. Considering that TIM-3, like cytotoxic T lymphocyte antigen 4 (CTLA-4) and programmed death 1 (PD-1), is being targeted for cancer immunotherapy, it is important to identify the circumstances under which TIM-3 can inhibit and activate T-cell responses. Here we show that TIM-3 is co-expressed and forms a heterodimer with carcinoembryonic antigen cell adhesion molecule 1 (CEACAM1), another well-known molecule expressed on activated T cells and involved in T-cell inhibition. Biochemical, biophysical and X-ray crystallography studies show that the membrane-distal immunoglobulin-variable (IgV)-like amino-terminal domain of each is crucial to these interactions. The presence of CEACAM1 endows TIM-3 with inhibitory function. CEACAM1 facilitates the maturation and cell surface expression of TIM-3 by forming a heterodimeric interaction in cis through the highly related membrane-distal N-terminal domains of each molecule. CEACAM1 and TIM-3 also bind in trans through their N-terminal domains. Both cis and trans interactions between CEACAM1 and TIM-3 determine the tolerance-inducing function of TIM-3. In a mouse adoptive transfer colitis model, CEACAM1-deficient T cells are hyper-inflammatory with reduced cell surface expression of TIM-3 and regulatory cytokines, and this is restored by T-cell-specific CEACAM1 expression. During chronic viral infection and in a tumour environment, CEACAM1 and TIM-3 mark exhausted T cells. Co-blockade of CEACAM1 and TIM-3 leads to enhancement of anti-tumour immune responses with improved elimination of tumours in mouse colorectal cancer models. Thus, CEACAM1 serves as a heterophilic ligand for TIM-3 that is required for its ability to mediate T-cell inhibition, and this interaction has a crucial role in regulating autoimmunity and anti-tumour immunity.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple