Millipore Sigma Vibrant Logo
 

metila


2151 Results Gelişmiş Arama  
Showing
Products (0)
Dokümanlar (2.150)

Sonuçlarınızı Daraltın Use the filters below to refine your search

Application Type

Field of Activity

Parameter

Sample

Aradığınızı Bulamadınız mı?
Müşteri Hizmetleri ile
İletişime Geçin

 
MilliporeSigma Documents

Doküman ararken yardıma ihtiyacınız var mı?

  • Analiz sertifikaları, Kalite Sertifikaları veya Güvenlik Bilgi Formlarını aramak için Doküman Arayıcı’yı kullanmayı deneyin.
     
  • Kullanım Kılavuzlarına erişmek için yardıma ihtiyacınız olur ise Müşteri Hizmetleri ile iletişime geçebilirsiniz.
  • Serotonin-immunoreactive neurons and mast cells in the mouse esophagus suggest involvement of serotonin in both motility control and neuroimmune interactions. 22029710

    Background  Serotonin is a major transmitter in the gastrointestinal tract, but little is known about the serotonergic system in the esophagus. Methods  The aim of this study was to use multilabel immunofluorescence to characterize serotonin-positive nerve cell bodies and fibers and their relationship with other neuronal and non-neuronal elements in the mouse esophagus. Antibodies against serotonin, vesicular acetylcholine transporter (VAChT), choline acetyltransferase (ChAT), protein gene product 9.5 (PGP 9.5), and α-bungarotoxin (α-BT), were used. Key Results  Serotonin-containing perikarya represented ∼10% of all PGP 9.5-positive myenteric neurons. Serotonin-positive varicose nerve fibers were found in the lamina muscularis mucosae and present on ∼13% of α-BT-labeled motor endplates in addition to VAChT-immunoreactive motor terminals. As ChAT-positive neurons of the compact formation of the nucleus ambiguus were negative for serotonin, serotonin-positive varicosities on motor endplates are presumed to be of enteric origin. On the other hand, cholinergic ambiguus neurons were densely supplied with serotonin-positive varicosities. The tela submucosa and tunica adventitia contained large numbers of serotonin-positive mast cells, a few of which were in close association with serotonin-positive nerve fibers. Conclusions & Inferences  The mouse esophagus is endowed with a rich serotonin-positive intrinsic innervation, including enteric co-innervation of striated muscles. Serotonin may modulate vagal motor innervation of esophageal-striated muscles not only at the central level via projections of the raphe nuclei to the nucleus ambiguus but also at the peripheral level via enteric co-innervation. In addition, mast cells represent a non-neuronal source of serotonin, being involved in neuroimmune processes.© 2011 Blackwell Publishing Ltd.
    Document Type:
    Reference
    Product Catalog Number:
    AB5898
    Product Catalog Name:
    Anti-Protein Gene Product 9.5 Antibody
  • NET23/STING promotes chromatin compaction from the nuclear envelope. 25386906

    Changes in the peripheral distribution and amount of condensed chromatin are observed in a number of diseases linked to mutations in the lamin A protein of the nuclear envelope. We postulated that lamin A interactions with nuclear envelope transmembrane proteins (NETs) that affect chromatin structure might be altered in these diseases and so screened thirty-one NETs for those that promote chromatin compaction as determined by an increase in the number of chromatin clusters of high pixel intensity. One of these, NET23 (also called STING, MITA, MPYS, ERIS, Tmem173), strongly promoted chromatin compaction. A correlation between chromatin compaction and endogenous levels of NET23/STING was observed for a number of human cell lines, suggesting that NET23/STING may contribute generally to chromatin condensation. NET23/STING has separately been found to be involved in innate immune response signaling. Upon infection cells make a choice to either apoptose or to alter chromatin architecture to support focused expression of interferon genes and other response factors. We postulate that the chromatin compaction induced by NET23/STING may contribute to this choice because the cells expressing NET23/STING eventually apoptose, but the chromatin compaction effect is separate from this as the condensation was still observed when cells were treated with Z-VAD to block apoptosis. NET23/STING-induced compacted chromatin revealed changes in epigenetic marks including changes in histone methylation and acetylation. This indicates a previously uncharacterized nuclear role for NET23/STING potentially in both innate immune signaling and general chromatin architecture.
    Document Type:
    Reference
    Product Catalog Number:
    07-523
    Product Catalog Name:
    Anti-trimethyl-Histone H3 (Lys9) Antibody
  • Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. 22210859

    The TET family of FE(II) and 2-oxoglutarate-dependent enzymes (Tet1/2/3) promote DNA demethylation by converting 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), which they further oxidize into 5-formylcytosine and 5-carboxylcytosine. Tet1 is robustly expressed in mouse embryonic stem cells (mESCs) and has been implicated in mESC maintenance. Here we demonstrate that, unlike genetic deletion, RNAi-mediated depletion of Tet1 in mESCs led to a significant reduction in 5hmC and loss of mESC identity. The differentiation phenotype due to Tet1 depletion positively correlated with the extent of 5hmC loss. Meta-analyses of genomic data sets suggested interaction between Tet1 and leukemia inhibitory factor (LIF) signaling. LIF signaling is known to promote self-renewal and pluripotency in mESCs partly by opposing MAPK/ERK-mediated differentiation. Withdrawal of LIF leads to differentiation of mESCs. We discovered that Tet1 depletion impaired LIF-dependent Stat3-mediated gene activation by affecting Stat3's ability to bind to its target sites on chromatin. Nanog overexpression or inhibition of MAPK/ERK signaling, both known to maintain mESCs in the absence of LIF, rescued Tet1 depletion, further supporting the dependence of LIF/Stat3 signaling on Tet1. These data support the conclusion that analysis of mESCs in the hours/days immediately following efficient Tet1 depletion reveals Tet1's normal physiological role in maintaining the pluripotent state that may be subject to homeostatic compensation in genetic models.
    Document Type:
    Reference
    Product Catalog Number:
    AB9220
    Product Catalog Name:
    Anti-Nanog Antibody
  • CHFR protein regulates mitotic checkpoint by targeting PARP-1 protein for ubiquitination and degradation. 22337872

    The mitotic checkpoint gene CHFR (checkpoint with forkhead-associated (FHA) and RING finger domains) is silenced by promoter hypermethylation or mutated in various human cancers, suggesting that CHFR is an important tumor suppressor. Recent studies have reported that CHFR functions as an E3 ubiquitin ligase, resulting in the degradation of target proteins. To better understand how CHFR suppresses cell cycle progression and tumorigenesis, we sought to identify CHFR-interacting proteins using affinity purification combined with mass spectrometry. Here we show poly(ADP-ribose) polymerase 1 (PARP-1) to be a novel CHFR-interacting protein. In CHFR-expressing cells, mitotic stress induced the autoPARylation of PARP-1, resulting in an enhanced interaction between CHFR and PARP-1 and an increase in the polyubiquitination/degradation of PARP-1. The decrease in PARP-1 protein levels promoted cell cycle arrest at prophase, supporting that the cells expressing CHFR were resistant to microtubule inhibitors. In contrast, in CHFR-silenced cells, polyubiquitination was not induced in response to mitotic stress. Thus, PARP-1 protein levels did not decrease, and cells progressed into mitosis under mitotic stress, suggesting that CHFR-silenced cancer cells were sensitized to microtubule inhibitors. Furthermore, we found that cells from Chfr knockout mice and CHFR-silenced primary gastric cancer tissues expressed higher levels of PARP-1 protein, strongly supporting our data that the interaction between CHFR and PARP-1 plays an important role in cell cycle regulation and cancer therapeutic strategies. On the basis of our studies, we demonstrate a significant advantage for use of combinational chemotherapy with PARP inhibitors for cancer cells resistant to microtubule inhibitors.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1501R
    Product Catalog Name:
    Anti-Actin Antibody,clone C4
  • Reprogramming of lysosomal gene expression by interleukin-4 and Stat6. 24314139

    Lysosomes play important roles in multiple aspects of physiology, but the problem of how the transcription of lysosomal genes is coordinated remains incompletely understood. The goal of this study was to illuminate the physiological contexts in which lysosomal genes are coordinately regulated and to identify transcription factors involved in this control.As transcription factors and their target genes are often co-regulated, we performed meta-analyses of array-based expression data to identify regulators whose mRNA profiles are highly correlated with those of a core set of lysosomal genes. Among the ~50 transcription factors that rank highest by this measure, 65% are involved in differentiation or development, and 22% have been implicated in interferon signaling. The most strongly correlated candidate was Stat6, a factor commonly activated by interleukin-4 (IL-4) or IL-13. Publicly available chromatin immunoprecipitation (ChIP) data from alternatively activated mouse macrophages show that lysosomal genes are overrepresented among Stat6-bound targets. Quantification of RNA from wild-type and Stat6-deficient cells indicates that Stat6 promotes the expression of over 100 lysosomal genes, including hydrolases, subunits of the vacuolar H⁺ ATPase and trafficking factors. While IL-4 inhibits and activates different sets of lysosomal genes, Stat6 mediates only the activating effects of IL-4, by promoting increased expression and by neutralizing undefined inhibitory signals induced by IL-4.The current data establish Stat6 as a broadly acting regulator of lysosomal gene expression in mouse macrophages. Other regulators whose expression correlates with lysosomal genes suggest that lysosome function is frequently re-programmed during differentiation, development and interferon signaling.
    Document Type:
    Reference
    Product Catalog Number:
    12-370
    Product Catalog Name:
    Normal Rabbit IgG
  • The Hypertension Risk Variant Rs820430 Functions as an Enhancer of SLC4A7. 27784683

    The large-scale meta-analysis of genome-wide association study (GWAS) recently identified a genomic locus where the genetic variant at rs820430 was strongly associated with hypertension in Chinese Han population, with its T allele conferred increased risks. However, the biological and disease-relevant mechanisms for this association remain elusive.A group of 275 participants from rural district of Shandong Province were enrolled, rs820430 was genotyped using genomic DNA with the fluorogenic 5'-nuclease TaqMan allelic discrimination assay system (Applied Biosystems, CA). In vitro experiments were performed in this study, such as luciferase reporter assays, gel mobility shift assays (electrophoretic mobility shift assay), and chromatin immunoprecipitation.We found the risk T allele of rs820430 was associated with higher SLC4A7 mRNA level in cohort population. Furthermore, we characterized a cis-regulatory mechanism that the T allele of rs820430 distinctively increased c-Fos transcription factor binding, by which leading to increased SLC4A7 expression.The present study indicated that the disease-associated T allele of a new hypertension risk variant rs820430 linked increased hypertension risk through higher SLC4A7 expression, and rs820430 functioned as an enhancer of SLC4A7 transcription by allele distinctively increased c-Fos transcription factor binding.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Peroxisome proliferator-activated receptor alpha plays a crucial role in behavioral repetition and cognitive flexibility in mice. 26137440

    Nuclear peroxisome proliferator activated receptor-α (PPAR-α) plays a fundamental role in the regulation of lipid homeostasis and is the target of medications used to treat dyslipidemia. However, little is known about the role of PPAR-α in mouse behavior.To investigate the function of Ppar-α in cognitive functions, a behavioral phenotype analysis of mice with a targeted genetic disruption of Ppar-α was performed in combination with neuroanatomical, biochemical and pharmacological manipulations. The therapeutic exploitability of PPAR-α was probed in mice using a pharmacological model of psychosis and a genetic model (BTBR T + tf/J) exhibiting a high rate of repetitive behavior.An unexpected role for brain Ppar-α in the regulation of cognitive behavior in mice was revealed. Specifically, we observed that Ppar-α genetic perturbation promotes rewiring of cortical and hippocampal regions and a behavioral phenotype of cognitive inflexibility, perseveration and blunted responses to psychomimetic drugs. Furthermore, we demonstrate that the antipsychotic and autism spectrum disorder (ASD) medication risperidone ameliorates the behavioral profile of Ppar-α deficient mice. Importantly, we reveal that pharmacological PPAR-α agonist treatment in mice improves behavior in a pharmacological model of ketamine-induced behavioral dysinhibition and repetitive behavior in BTBR T + tf/J mice.Our data indicate that Ppar-α is required for normal cognitive function and that pharmacological stimulation of PPAR-α improves cognitive function in pharmacological and genetic models of impaired cognitive function in mice. These results thereby reveal an unforeseen therapeutic application for a class of drugs currently in human use.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1572
    Product Catalog Name:
    Anti-Parvalbumin Antibody
  • Wnt signaling blockage inhibits cell proliferation and migration, and induces apoptosis in triple-negative breast cancer cells. 24188694

    Triple-negative breast cancer (TNBC) is an aggressive clinical subtype of breast cancer that is characterized by the lack of estrogen receptor (ER) and progesterone receptor (PR) expression as well as human epidermal growth factor receptor 2 (HER2) overexpression. The TNBC subtype constitutes approximately 10%-20% of all breast cancers, but has no effective molecular targeted therapies. Previous meta-analysis of gene expression profiles of 587 TNBC cases from 21 studies demonstrated high expression of Wnt signaling pathway-associated genes in basal-like 2 and mesenchymal subtypes of TNBC. In this study, we investigated the potential of Wnt pathway inhibitors in effective treatment of TNBC.Activation of Wnt pathway was assessed in four TNBC cell lines (BT-549, MDA-MB-231, HCC-1143 and HCC-1937), and the ER+ cell line MCF-7 using confocal microscopy and Western blot analysis of pathway components. Effectiveness of five different Wnt pathway inhibitors (iCRT-3, iCRT-5, iCRT-14, IWP-4 and XAV-939) on cell proliferation and apoptosis were tested in vitro. The inhibitory effects of iCRT-3 on canonical Wnt signaling in TNBC was evaluated by quantitative real-time RT-PCR analysis of Axin2 and dual-luciferase reporter assays. The effects of shRNA knockdown of SOX4 in combination with iCRT-3 and/or genistein treatments on cell proliferation, migration and invasion on BT-549 cells were also evaluated.Immunofluorescence staining of β-catenin in TNBC cell lines showed both nuclear and cytoplasmic localization, indicating activation of Wnt pathway in TNBC cells. iCRT-3 was the most effective compound for inhibiting proliferation and antagonizing Wnt signaling in TNBC cells. In addition, treatment with iCRT-3 resulted in increased apoptosis in vitro. Knockdown of the Wnt pathway transcription factor, SOX4 in triple negative BT-549 cells resulted in decreased cell proliferation and migration, and combination treatment of iCRT-3 with SOX4 knockdown had a synergistic effect on inhibition of cell proliferation and induction of apoptosis.These data suggest that targeting SOX4 and/or the Wnt pathway could have therapeutic benefit for TNBC patients.
    Document Type:
    Reference
    Product Catalog Number:
    05-665
    Product Catalog Name:
    Anti-Active-β-Catenin (Anti-ABC) Antibody, clone 8E7
  • Disease-related growth factor and embryonic signaling pathways modulate an enhancer of TCF21 expression at the 6q23.2 coronary heart disease locus. 23874238

    Coronary heart disease (CHD) is the leading cause of mortality in both developed and developing countries worldwide. Genome-wide association studies (GWAS) have now identified 46 independent susceptibility loci for CHD, however, the biological and disease-relevant mechanisms for these associations remain elusive. The large-scale meta-analysis of GWAS recently identified in Caucasians a CHD-associated locus at chromosome 6q23.2, a region containing the transcription factor TCF21 gene. TCF21 (Capsulin/Pod1/Epicardin) is a member of the basic-helix-loop-helix (bHLH) transcription factor family, and regulates cell fate decisions and differentiation in the developing coronary vasculature. Herein, we characterize a cis-regulatory mechanism by which the lead polymorphism rs12190287 disrupts an atypical activator protein 1 (AP-1) element, as demonstrated by allele-specific transcriptional regulation, transcription factor binding, and chromatin organization, leading to altered TCF21 expression. Further, this element is shown to mediate signaling through platelet-derived growth factor receptor beta (PDGFR-β) and Wilms tumor 1 (WT1) pathways. A second disease allele identified in East Asians also appears to disrupt an AP-1-like element. Thus, both disease-related growth factor and embryonic signaling pathways may regulate CHD risk through two independent alleles at TCF21.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • CCN3/NOV gene expression in human prostate cancer is directly suppressed by the androgen receptor. 23318417

    Androgen receptor (AR) has essential roles during prostate cancer progression. With genome-wide AR-binding sites mapped to high resolution, studies have recently reported AR as a transcriptional repressor. How AR inhibits gene expression and how this contributes to prostate cancer, however, are incompletely understood. Through meta-analysis of microarray data, here we nominate nephroblastoma overexpressed (NOV) as a top androgen-repressed gene. We show that NOV is directly suppressed by androgen through the AR. AR occupies the NOV enhancer and communicates with the NOV promoter through DNA looping. AR activation recruits the polycomb group protein EZH2, which subsequently catalyzes histone H3 lysine 27 tri-methylation around the NOV promoter, thus leading to repressive chromatin remodeling and epigenetic silencing. Concordantly, AR and EZH2 inhibition synergistically restored NOV expression. NOV is downregulated in human prostate cancer wherein AR and EZH2 are upregulated. Functionally, NOV inhibits prostate cancer cell growth in vitro and in vivo. NOV reconstitution reverses androgen-induced cell growth and NOV knockdown drives androgen-independent cell growth. In addition, NOV expression is restored by hormone-deprivation therapies in mice and prostate cancer patients. Therefore, using NOV as a model gene we gained further understanding of the mechanisms underlying AR-mediated transcriptional repression. Our findings establish a tumor-suppressive role of NOV in prostate cancer and suggest that one important, but previously underestimated, manner by which AR contributes to prostate cancer progression is through inhibition of key tumor-suppressor genes.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple