Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together: -MAPmates™ that require a different assay buffer -Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9) -PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701) -More than 1 phospho-MAPmate™ for a single target (Akt, STAT3) -GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
The potassium ionophore nigericin induces cell death and promotes the maturation and release of IL-1beta in lipopolysaccharide (LPS)-primed monocytes and macrophages, the latter depending on caspase-1 activation by an unknown mechanism. Here, we investigate the pathway that triggers cell death and activates caspase-1. We show that without LPS priming, nigericin alone triggered caspase-1 activation and IL-18 generation in THP-1 monocytic cells. Simultaneously, nigericin induced caspase-1-independent necrotic cell death, which was blocked by the cathepsin B inhibitor CA-074-Me and other cathepsin inhibitors. Cathepsin B activation after nigericin treatment was determined biochemically and corroborated by rapid lysosomal leakage and translocation of cathepsin B to the cytoplasm. IL-18 maturation was prevented by both caspase-1 and cathepsin B inhibitors in THP-1 cells, primary mouse macrophages and human blood monocytes. Moreover, IL-18 generation was reduced in THP-1 cells stably transformed either with cystatin A (an endogenous cathepsin inhibitor) or antisense cathepsin B cDNA. Collectively, our study establishes a critical role for cathepsin B in nigericin-induced caspase-1-dependent IL-18 maturation and caspase-1-independent necrosis.
Document Type:
Reference
Product Catalog Number:
MAB3083
Product Catalog Name:
Anti-Calpain Antibody, small subunit of µ- or m-Calpains (Calpain I or II), clone P1
The primary neuroendocrine interface, hypothalamus and pituitary, together with adrenals, constitute the major axis responsible for the maintenance of homeostasis and the response to the perturbations in the environment. The gene expression profiling in the human hypothalamus-pituitary-adrenal axis was catalogued by generating a large amount of expressed sequence tags (ESTs), followed by bioinformatics analysis (http://www.chgc.sh.cn/ database). Totally, 25,973 sequences of good quality were obtained from 31,130 clones (83.4%) from cDNA libraries of the hypothalamus, pituitary, and adrenal glands. After eliminating 5,347 sequences corresponding to repetitive elements and mtDNA, 20,626 ESTs could be assembled into 9, 175 clusters (3,979, 3,074, and 4,116 clusters in hypothalamus, pituitary, and adrenal glands, respectively) when overlapping ESTs were integrated. Of these clusters, 2,777 (30.3%) corresponded to known genes, 4,165 (44.8%) to dbESTs, and 2,233 (24.3%) to novel ESTs. The gene expression profiles reflected well the functional characteristics of the three levels in the hypothalamus-pituitary-adrenal axis, because most of the 20 genes with highest expression showed statistical difference in terms of tissue distribution, including a group of tissue-specific functional markers. Meanwhile, some findings were made with regard to the physiology of the axis, and 200 full-length cDNAs of novel genes were cloned and sequenced. All of these data may contribute to the understanding of the neuroendocrine regulation of human life.