Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together: -MAPmates™ that require a different assay buffer -Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9) -PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701) -More than 1 phospho-MAPmate™ for a single target (Akt, STAT3) -GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
Mycobacterium tuberculosis (Mtb) is an exclusively human pathogen that proliferates within phagosomes of host phagocytes. Host lipids are believed to provide the major carbon and energy sources for Mtb, with only limited availability of carbohydrates. There is an apparent paradox because five putative carbohydrate uptake permeases are present in Mtb, but there are essentially no host carbohydrates inside phagosomes. Nevertheless, carbohydrate transporters have been implicated in Mtb pathogenesis, suggesting that acquisition of host sugars is important during some stages of infection. Here we show, however, that the LpqY-SugA-SugB-SugC ATP-binding cassette transporter is highly specific for uptake of the disaccharide trehalose, a sugar not present in mammals, thus refuting a role in nutrient acquisition from the host. Trehalose release is known to occur as a byproduct of the biosynthesis of the mycolic acid cell envelope by Mtb's antigen 85 complex. The antigen 85 complex constitutes a group of extracellular mycolyl transferases, which transfer the lipid moiety of the glycolipid trehalose monomycolate (TMM) to arabinogalactan or another molecule of TMM, yielding trehalose dimycolate. These reactions also lead to the concomitant extracellular release of the trehalose moiety of TMM. We found that the LpqY-SugA-SugB-SugC ATP-binding cassette transporter is a recycling system mediating the retrograde transport of released trehalose. Perturbations in trehalose recycling strongly impaired virulence of Mtb. This study reveals an unexpected accessory component involved in the formation of the mycolic acid cell envelope in mycobacteria and provides a previously unknown role for sugar transporters in bacterial pathogenesis.