Saltar al contenido
Merck
  • Coupling of the insulin-like growth factor-I receptor tyrosine kinase to Gi2 in human intestinal smooth muscle: Gbetagamma -dependent mitogen-activated protein kinase activation and growth.

Coupling of the insulin-like growth factor-I receptor tyrosine kinase to Gi2 in human intestinal smooth muscle: Gbetagamma -dependent mitogen-activated protein kinase activation and growth.

The Journal of biological chemistry (2000-12-20)
J F Kuemmerle, K S Murthy
RESUMEN

Endogenous insulin-like growth factor-1 (IGF-I) stimulates growth of cultured human intestinal smooth muscle by activating distinct mitogen-activated protein (MAP) kinase-dependent and phosphatidylinositol 3-kinase-dependent signaling pathways. In Rat1 and Balb/c3T3 fibroblasts and in neurons the IGF-I receptor is coupled to an inhibitory G protein, G(i), which mediates G(beta)gamma-dependent MAP kinase activation. The present study determined whether in normal human intestinal smooth muscle cells the IGF-I receptor activates a heterotrimeric G protein and the role of G protein activation in mediating IGF-I-induced growth. IGF-I elicited IGF-I receptor tyrosine phosphorylation, resulting in the specific activation of G(i2). G(beta)gamma subunits selectively mediated IGF-I-dependent MAP kinase activation; G(alpha)i2 subunits selectively mediated IGF-I-dependent inhibition of adenylyl cyclase activity. IGF-I-stimulated MAP kinase activation and growth were inhibited by pertussis toxin, an inhibitor of G(i)/G(o) activation. Cyclic AMP inhibits growth of human intestinal muscle cells. IGF-I inhibited both basal and forskolin-stimulated cAMP levels. This inhibition was attenuated in the presence of pertussis toxin. IGF-I stimulated phosphatidylinositol 3-kinase activation, in contrast to MAP kinase activation, occurred independently of G(i2) activation. These data suggest that IGF-I specifically activates G(i2), resulting in concurrent G(beta)gamma-dependent stimulation of MAP kinase activity and growth, and G(alpha)i2-dependent inhibition of cAMP levels resulting in disinhibition of cAMP-mediated growth suppression.

MATERIALES
Product Number
Marca
Descripción del producto

Sigma-Aldrich
Anticuerpo anti-fosfotirosina, clon 4G10 ®, clone 4G10®, Upstate®, from mouse