Saltar al contenido
Merck
  • Interaction of early growth response protein 1 (Egr-1), specificity protein 1 (Sp1), and cyclic adenosine 3'5'-monophosphate response element binding protein (CREB) at a proximal response element is critical for gastrin-dependent activation of the chromogranin A promoter.

Interaction of early growth response protein 1 (Egr-1), specificity protein 1 (Sp1), and cyclic adenosine 3'5'-monophosphate response element binding protein (CREB) at a proximal response element is critical for gastrin-dependent activation of the chromogranin A promoter.

Molecular endocrinology (Baltimore, Md.) (2002-11-29)
Raktima Raychowdhury, Georgia Schäfer, John Fleming, Stefan Rosewicz, Bertram Wiedenmann, Timothy C Wang, Michael Höcker
RESUMEN

Recently, binding of specific protein 1 (Sp1) and cAMP response element binding protein (CREB) to a GC-rich element at -92/-62 has been identified as a critical step in gastrin-dependent regulation of the chromogranin A (CgA) gene in gastric epithelial cells. Here we demonstrate that binding of early growth response protein 1 (Egr-1) to the distal part of the -92/-62 site is also required for gastrin-dependent CgA transactivation. Gastrin elevated cellular and nuclear Egr-1 levels in a time-dependent manner and also increased Egr-1 binding to the CgA -92/-73 region. Disruption of this site reduced gastrin responsiveness without influencing basal promoter activity, while loss of Sp1 and/or CREB binding sites diminished basal and gastrin-stimulated CgA promoter activity. Ectopic Egr-1 overexpression potently stimulated the CgA promoter, whereas coexpression of Egr-1 with Sp1 and/or CREB resulted in additive effects. Functional analysis of Sp1-, Egr-1-, or CREB-specific promoter mutations in transfection studies confirmed the tripartite organization of the CgA -92/-62 element. Signaling studies revealed that MAPK kinase 1 (MEK1)/ERK1/2 cascades are critical for gastrin-dependent Egr-1 protein accumulation as well as Egr-1 binding to the CgA promoter. Our studies for the first time identify Egr-1 as a nuclear target of gastrin and show that functional interplay of Egr-1, Sp1, and CREB is indispensable for gastrin-dependent CgA transactivation in gastric epithelial cells.