Saltar al contenido
Merck

Carbon ion beam is more effective to induce cell death in sphere-type A172 human glioblastoma cells compared with X-rays.

International journal of radiation biology (2014-06-03)
Momoko Takahashi, Hirokazu Hirakawa, Hirohiko Yajima, Nakako Izumi-Nakajima, Ryuichi Okayasu, Akira Fujimori
RESUMEN

To obtain human glioblastoma cells A172 expressing stem cell-related protein and comparison of radiosensitivity in these cells with X-rays and carbon beam. Human monolayer-type A172 glioblastoma cells were maintained in normal medium with 10% bovine serum. In order to obtain sphere-type A172 cells the medium was replaced with serum-free medium supplemented with growth factors. Both types of A172 cells were irradiated with either X-rays or carbon ion beams and their radiosensitivity was evaluated. Serum-free medium induced expression of stem cell-related proteins in A172 cells along with the neurosphere-like appearance. These sphere-type cells were found resistant to both X-rays and carbon ion beams. Phosphorylation of histone H2A family member X persisted for a longer period in the cells exposed to carbon ion beams than in those exposed to X-rays and it disappeared quicker in the sphere type than in the monolayer type. Relative radioresistance of the sphere type cells was smaller for carbon ion beams than for X-rays. We demonstrated that glioblastoma A172 cells with induced stem cell-related proteins turned resistant to irradiation. Accelerated heavy ion particles may have advantage over X-rays in overcoming the tumor resistance due to cell stemness.

MATERIALES
Número de producto
Marca
Descripción del producto

Sigma-Aldrich
Dodecilsulfatosódico, BioReagent, suitable for electrophoresis, Molecular Biology, ≥98.5% (GC)
Sigma-Aldrich
DAPI, for nucleic acid staining
Sigma-Aldrich
Dodecilsulfatosódico, ≥99.0% (GC), dust-free pellets
Sigma-Aldrich
Cloruro de sodio, Molecular Biology, DNase, RNase, and protease, none detected, ≥99% (titration)
Sigma-Aldrich
Sodium chloride solution, 5 M in H2O, BioReagent, Molecular Biology, suitable for cell culture
Sigma-Aldrich
Cloruro de sodio, BioXtra, ≥99.5% (AT)
Sigma-Aldrich
Cloruro de sodio, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, ≥99%
Sigma-Aldrich
Sodium chloride solution, 0.9% in water, BioXtra, suitable for cell culture
Sigma-Aldrich
Dodecilsulfatosódico, ACS reagent, ≥99.0%
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, Molecular Biology, 10% in H2O
Sigma-Aldrich
Activated charcoal, DARCO®, −100 mesh particle size, powder
Sigma-Aldrich
Sodium deoxycholate, BioXtra, ≥98.0% (dry matter, NT)
Sigma-Aldrich
Sodium deoxycholate, ≥97% (titration)
Sigma-Aldrich
Dodecilsulfatosódico, ReagentPlus®, ≥98.5% (GC)
Sigma-Aldrich
Activated charcoal, powder, -100 particle size (mesh), decolorizing
Sigma-Aldrich
Sodium chloride solution, 5 M
Sigma-Aldrich
Dodecilsulfatosódico, BioUltra, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Sodium dodecyl sulfate solution, BioUltra, 20% in H2O
SAFC
Sodium chloride solution, 5 M
Sigma-Aldrich
Fluorescein 5(6)-isothiocyanate, BioReagent, suitable for fluorescence, mixture of 2 components, ≥90% (HPLC)
Sigma-Aldrich
Fluorescein isothiocyanate isomer I, suitable for protein labeling, ≥90% (HPLC), powder
Sigma-Aldrich
Activated charcoal, DARCO®, 20-40 mesh particle size, granular
Supelco
Dodecilsulfatosódico, dust-free pellets, suitable for electrophoresis, Molecular Biology, ≥99.0% (GC)
Sigma-Aldrich
Activated Charcoal Norit®, Norit® PK 1-3, from peat, steam activated, granular
Sigma-Aldrich
Cloruro de sodio, JIS special grade, ≥99.5%
Supelco
Dodecilsulfatosódico, suitable for ion pair chromatography, LiChropur, ≥99.0%
Sigma-Aldrich
Activated Charcoal Norit®, Norit® SX ultra, from peat, steam activated and acid washed, highly purified, powder
Sigma-Aldrich
Cloruro de sodio, BioUltra, Molecular Biology, ≥99.5% (AT)
Sigma-Aldrich
Activated charcoal, untreated, granular, ≤5 mm