Saltar al contenido
Merck

Oxidation of F-actin controls the terminal steps of cytokinesis.

Nature communications (2017-02-24)
Stéphane Frémont, Hussein Hammich, Jian Bai, Hugo Wioland, Kerstin Klinkert, Murielle Rocancourt, Carlos Kikuti, David Stroebel, Guillaume Romet-Lemonne, Olena Pylypenko, Anne Houdusse, Arnaud Echard
RESUMEN

Cytokinetic abscission, the terminal step of cell division, crucially depends on the local constriction of ESCRT-III helices after cytoskeleton disassembly. While the microtubules of the intercellular bridge are cut by the ESCRT-associated enzyme Spastin, the mechanism that clears F-actin at the abscission site is unknown. Here we show that oxidation-mediated depolymerization of actin by the redox enzyme MICAL1 is key for ESCRT-III recruitment and successful abscission. MICAL1 is recruited to the abscission site by the Rab35 GTPase through a direct interaction with a flat three-helix domain found in MICAL1 C terminus. Mechanistically, in vitro assays on single actin filaments demonstrate that MICAL1 is activated by Rab35. Moreover, in our experimental conditions, MICAL1 does not act as a severing enzyme, as initially thought, but instead induces F-actin depolymerization from both ends. Our work reveals an unexpected role for oxidoreduction in triggering local actin depolymerization to control a fundamental step of cell division.

MATERIALES
Product Number
Marca
Descripción del producto

Sigma-Aldrich
ANTI-FLAG® M2 monoclonal antibody produced in mouse, 1 mg/mL, clone M2, affinity isolated antibody, buffered aqueous solution (50% glycerol, 10 mM sodium phosphate, and 150 mM NaCl, pH 7.4)
Sigma-Aldrich
Anti-α-tubulina monoclonal antibody produced in mouse, ascites fluid, clone B-5-1-2
Sigma-Aldrich
Anti-polihistidina monoclonal antibody produced in mouse, clone HIS-1, ascites fluid