Millipore Sigma Vibrant Logo
 

Parathyroid Hormone Receptor


148 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (148)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (131)
  • (16)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Parathyroid hormone receptor directly interacts with dishevelled to regulate beta-Catenin signaling and osteoclastogenesis. 20212039

    Bone growth and remodeling depend upon the opposing rates of bone formation and resorption. These functions are regulated by intrinsic seven transmembrane-spanning receptors, the parathyroid hormone receptor (PTH1R) and frizzled (FZD), through their respective ligands, parathyroid hormone (PTH) and Wnt. FZD activation of canonical beta-catenin signaling requires the adapter protein Dishevelled (Dvl). We identified a Dvl-binding motif in the PTH1R. Here, we report that the PTH1R activates the beta-catenin pathway by directly recruiting Dvl, independent of Wnt or LRP5/6. PTH1R coimmunoprecipitated with Dvl. Deleting the carboxyl-terminal PTH1R PDZ-recognition domain did not abrogate PTH1R-Dvl interactions; nor did truncating the receptor at position 480. However, further deletion eliminating the putative Dvl recognition domain abolished PTH1R interactions with Dvl. PTH activated beta-catenin in a time- and concentration-dependent manner and translocated beta-catenin to the nucleus. beta-Catenin activation was inhibited by Dvl2 dominant negatives and by short hairpin RNA sequences targeted against Dvl2. PTH-induced osteoclastogenesis was also inhibited by Dvl2 dominant negative mutants. These findings demonstrate that G protein-coupled receptors other than FZD directly activate beta-catenin signaling, thereby mimicking many of the functions of the canonical Wnt-FZD pathway. The distinct modes whereby FZD and PTH1R activate beta-catenin control convergent or divergent effects on osteoblast differentiation, and osteoclastogenesis may arise from PTH1R-induced second messenger phosphorylation.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Tuberoinfundibular peptide of 39 residues modulates the mouse hypothalamic-pituitary-adrenal axis via paraventricular glutamatergic neurons. 20853513

    Neurons in the subparafascicular area at the caudal border of the thalamus that contain the neuropeptide tuberoinfundibular peptide of 39 residues (TIP39) densely innervate several hypothalamic areas, including the paraventricular nucleus (PVN). These areas contain a matching distribution of TIP39's receptor, the parathyroid hormone receptor 2 (PTH2R). Frequent PTH2R coexpression with a vesicular glutamate transporter (VGlut2) suggests that TIP39 could presynaptically regulate glutamate release. By using immunohistochemistry we found CRH-ir neurons surrounded by PTH2R-ir fibers and TIP39-ir axonal projections in the PVN area of the mouse brain. Labeling hypothalamic neuroendocrine neurons by peripheral injection of fluorogold in PTH2R-lacZ knock-in mice showed that most PTH2Rs are on PVN and peri-PVN interneurons and not on neuroendocrine cells. Double fluorescent in situ hybridization revealed a high level of coexpression between PTH2R and VGlut2 mRNA by cells located in the PVN and nearby brain areas. Local TIP39 infusion (100 pmol) robustly increased pCREB-ir in the PVN and adjacent perinuclear zone. It also increased plasma corticosterone and decreased plasma prolactin. These effects of TIP39 on pCREB-ir, corticosterone, and prolactin were abolished by coinfusion of the ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and DL-2-amino-5-phosphonopentanoic acid (AP-5; 30 pmol each) and were absent in PTH2R knockout mice. Basal plasma corticosterone was slightly decreased in TIP39 knockout mice just before onset of their active phase. The present data indicate that the TIP39 ligand/PTH2 receptor system provides facilitatory regulation of the hypothalamic-pituitary-adrenal axis via hypothalamic glutamatergic neurons and that it may regulate other neuroendocrine systems by a similar mechanism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Osteoblastic expansion induced by parathyroid hormone receptor signaling in murine osteocytes is not sufficient to increase hematopoietic stem cells. 22262765

    Microenvironmental expansion of hematopoietic stem cells (HSCs) is induced by treatment with parathyroid hormone (PTH) or activation of the PTH receptor (PTH1R) in osteoblastic cells; however, the osteoblastic subset mediating this action of PTH is unknown. Osteocytes are terminally differentiated osteoblasts embedded in mineralized bone matrix but are connected with the BM. Activation of PTH1R in osteocytes increases osteoblastic number and bone mass. To establish whether osteocyte-mediated PTH1R signaling expands HSCs, we studied mice expressing a constitutively active PTH1R in osteocytes (TG mice). Osteoblasts, osteoclasts, and trabecular bone were increased in TG mice without changes in BM phenotypic HSCs or HSC function. TG mice had progressively increased trabecular bone but decreased HSC function. In severely affected TG mice, phenotypic HSCs were decreased in the BM but increased in the spleen. TG osteocytes had no increase in signals associated with microenvironmental HSC support, and the spindle-shaped osteoblastic cells that increased with PTH treatment were not present in TG bones. These findings demonstrate that activation of PTH1R signaling in osteocytes does not expand BM HSCs, which are instead decreased in TG mice. Therefore, osteocytes do not mediate the HSC expansion induced by PTH1R signaling. Further, osteoblastic expansion is not sufficient to increase HSCs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5922
  • Over-expression of parathyroid hormone Type 1 receptor confers an aggressive phenotype in osteosarcoma. 17410535

    Osteosarcoma is the most common primary bone malignancy in children and is associated with rapid bone growth. Parathyroid hormone-related peptide (PTHrP) signaling via parathyroid hormone Type 1 receptor (PTHR1) is important for skeletal development and is involved in bone metastases in other tumors. The aim of this study was to investigate the status of PTHrP/PTHR1 and its possible role in osteosarcoma. In a preliminary screening, a higher level of PTHR1 mRNA, but not PTHrP, was found in 4 osteosarcoma xenografts as compared with 4 standard cell lines, or 5 patient derived cell lines (p 0.05) using quantitative RT-PCR. It was therefore extended to 55 patient specimens, in which a significantly higher level of PTHR1 mRNA was detected in metastatic or relapsed samples than those from primary sites (p 0.01). Cell behavior caused by PTHR1 overexpression was further studied in vitro using PTHR1 transfected HOS cell line as a model. Over-expression of PHTR1 resulted in increased proliferation, motility and Matrigel invasion without addition of exogenous PTHrP suggesting an autocrine effect. Importantly, the aggressiveness in PTHR1-expressing cells was completely reversed by RNAi mediated gene knockdown. In addition, PTHR1 over-expression led to delayed osteoblastic differentiation and upregulation of genes involved in extracellular matrix production, such as TGF-beta1 and connective tissue growth factor. When cocultured with bone marrow derived monocytes, PTHR1 transfected HOS cells induced a greater number of osteoclasts. This study suggests that PTHR1 over-expression may promote osteosarcoma progression by conferring a more aggressive phenotype, and forming a more favorable microenvironment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-870
  • Inhibition of epidermal growth factor receptor signalling reduces hypercalcaemia induced by human lung squamous-cell carcinoma in athymic mice. 17533397

    The purpose of this study was to evaluate the role of the epidermal growth factor receptor (EGFR) in parathyroid hormone-related protein (PTHrP) expression and humoral hypercalcaemia of malignancy (HHM), using two different human squamous-cell carcinoma (SCC) xenograft models. A randomised controlled study in which nude mice with RWGT2 and HARA xenografts received either placebo or gefitinib 200 mg kg(-1) for 3 days after developing HHM. Effectiveness of therapy was evaluated by measuring plasma calcium and PTHrP, urine cyclic AMP/creatinine ratios, and tumour volumes. The study end point was at 78 h. The lung SCC lines, RWGT2 and HARA, expressed high levels of PTHrP mRNA as well as abundant EGFR protein, but very little erbB2 or erbB3. Both lines expressed high transcript levels for the EGFR ligand, amphiregulin (AREG), as well as, substantially lower levels of transforming growth factor-alpha (TGF-alpha), and heparin binding-epidermal growth factor (HB-EGF) mRNA. Parathyroid hormone-related protein gene expression in both lines was reduced 40-80% after treatment with 1 muM of EGFR tyrosine kinase inhibitor PD153035 and precipitating antibodies to AREG. Gefitinib treatment of hypercalcaemic mice with RWGT2 and HARA xenografts resulted in a significant reduction of plasma total calcium concentrations by 78 h. Autocrine AREG stimulated the EGFR and increased PTHrP gene expression in the RWGT2 and HARA lung SCC lines. Inhibition of the EGFR pathway in two human SCC models of HHM by an anilinoquinazoline demonstrated that the EGFR tyrosine kinase is a potential target for antihypercalcaemic therapy.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-427
    Nombre del producto:
    Anti-Phosphotyrosine Antibody
  • SIKs control osteocyte responses to parathyroid hormone. 27759007

    Parathyroid hormone (PTH) activates receptors on osteocytes to orchestrate bone formation and resorption. Here we show that PTH inhibition of SOST (sclerostin), a WNT antagonist, requires HDAC4 and HDAC5, whereas PTH stimulation of RANKL, a stimulator of bone resorption, requires CRTC2. Salt inducible kinases (SIKs) control subcellular localization of HDAC4/5 and CRTC2. PTH regulates both HDAC4/5 and CRTC2 localization via phosphorylation and inhibition of SIK2. Like PTH, new small molecule SIK inhibitors cause decreased phosphorylation and increased nuclear translocation of HDAC4/5 and CRTC2. SIK inhibition mimics many of the effects of PTH in osteocytes as assessed by RNA-seq in cultured osteocytes and following in vivo administration. Once daily treatment with the small molecule SIK inhibitor YKL-05-099 increases bone formation and bone mass. Therefore, a major arm of PTH signalling in osteocytes involves SIK inhibition, and small molecule SIK inhibitors may be applied therapeutically to mimic skeletal effects of PTH.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Regulation of hypothalamic signaling by tuberoinfundibular peptide of 39 residues is critical for the response to cold: a novel peptidergic mechanism of thermoregulation. 22159128

    Euthermia is critical for mammalian homeostasis. Circuits within the preoptic hypothalamus regulate temperature, with fine control exerted via descending GABAergic inhibition of presympathetic motor neurons that control brown adipose tissue (BAT) thermogenesis and cutaneous vascular tone. The thermoregulatory role of hypothalamic excitatory neurons is less clear. Here we report peptidergic regulation of preoptic glutamatergic neurons that contributes to temperature regulation. Tuberoinfundibular peptide of 39 residues (TIP39) is a ligand for the parathyroid hormone 2 receptor (PTH2R). Both peptide and receptor are abundant in the preoptic hypothalamus. Based on PTH2R and vesicular glutamate transporter 2 (VGlut2) immunolabeling in animals with retrograde tracer injection, PTH2R-containing glutamatergic fibers are presynaptic to neurons projecting from the median preoptic nucleus (MnPO) to the dorsomedial hypothalamus. Transneuronal retrograde pathway tracing with pseudorabies virus revealed connectivity between MnPO VGlut2 and PTH2R neurons and BAT. MnPO injection of TIP39 increased body temperature by 2°C for several hours. Mice lacking TIP39 signaling, either because of PTH2R-null mutation or brain delivery of a PTH2R antagonist had impaired heat production upon cold exposure, but no change in basal temperature and no impairment in response to a hot environment. Thus, TIP39 appears to act on PTH2Rs present on MnPO glutamatergic terminals to regulate their activation of projection neurons and subsequent sympathetic BAT activation. This excitatory mechanism of heat production appears to be activated on demand, during cold exposure, and parallels the tonic inhibitory GABAergic control of body temperature.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB351
    Nombre del producto:
    Anti-Glutamate Decarboxylase Antibody, 65 kDa isoform, clone GAD-6