Millipore Sigma Vibrant Logo
 

anti-trimethyl+lysine+27+histone+h3


5 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (4)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (4)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • «
  • <
  • 1
  • >
  • »
  • Lymphoid-affiliated genes are associated with active histone modifications in human hematopoietic stem cells. 18625888

    To address the role of chromatin structure in the establishment of hematopoietic stem cell (HSC) multilineage potential and commitment to the lymphoid lineage, we have analyzed histone modifications at a panel of lymphoid- and myeloid-affiliated genes in multipotent and lineage-committed hematopoietic cells isolated from human cord blood. Our results show that many B- and T-lymphoid genes, although silent in HSCs, are associated with acetylated histones H3 and H4. We also detected histone H3 lysine 4 methylation but not repressive lysine 9 or 27 methylation marks at these loci, indicative of an open chromatin structure. Interestingly, the relative level of H3 lysine 4 dimethylation to trimethylation at B-specific loci was high in multipotent CD34(+)CD38(lo) progenitors and decreased as they become actively transcribed in B-lineage cells. In vitro differentiation of CD34(+) cells toward the erythroid, granulocyte, and T-cell lineages resulted in a loss of histone acetylation at nonlineage-associated genes. This study provides evidence that histone modifications involved in chromatin decondensation are already in place at lymphoid-specific genes in primary human HSCs, supporting the idea that these genes are primed for expression before lineage commitment. This permissive chromatin structure is progressively lost as the stem cell differentiates.
    Tipo de documento:
    Referencia
    Referencia del producto:
    20-153
    Nombre del producto:
    Chromatin Immunoprecipitation (ChIP) Dilution Buffer
  • Conversion of mouse fibroblasts into cardiomyocytes using a direct reprogramming strategy. 21278734

    Here we show that conventional reprogramming towards pluripotency through overexpression of Oct4, Sox2, Klf4 and c-Myc can be shortcut and directed towards cardiogenesis in a fast and efficient manner. With as little as 4 days of transgenic expression of these factors, mouse embryonic fibroblasts (MEFs) can be directly reprogrammed to spontaneously contracting patches of differentiated cardiomyocytes over a period of 11-12 days. Several lines of evidence suggest that a pluripotent intermediate is not involved. Our method represents a unique strategy that allows a transient, plastic developmental state established early in reprogramming to effectively function as a cellular transdifferentiation platform, the use of which could extend beyond cardiogenesis. Our study has potentially wide-ranging implications for induced pluripotent stem cell (iPSC)-factor-based reprogramming and broadens the existing paradigm.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-622
    Nombre del producto:
    ChIPAb+ Trimethyl-Histone H3 (Lys27) - ChIP Validated Antibody and Primer Set
  • Expression of vernalization responsive genes in wheat is associated with histone H3 trimethylation. 22684814

    The transition to flowering in winter wheat requires prolonged exposure to low temperature, a process called vernalization. This process is regulated by a genetic pathway that involves at least three genes, Triticum aestivum VERNALIZATION 1 (TaVRN1), Triticum aestivum VERNALIZATION 2 (TaVRN2) and Triticum aestivum FLOWERING LOCUS T-like 1 (TaFT1). These genes regulate flowering by integrating environmental and developmental cues. To determine whether the expression of these genes is associated with the chromatin methylation state during vernalization in wheat, the level of two markers of histone modifications, the activator histone H3 trimethylation of lysine 4 (H3K4me3) and the repressor histone H3 trimethylation of lysine 27 (H3K27me3) were measured at the promoter regions of these three genes. Bioinformatics analysis of these promoters demonstrates the presence of conserved cis-acting elements in the promoters of the three vernalization genes, TaVRN1, TaVRN2 and TaFT1. These elements are targeted by common transcription factors in the vernalization responsive cereals. These promoters also contain the functional units PRE/TRE targeted by Polycomb and Trithorax proteins that maintain repressed or active transcription states of developmentally regulated genes. These proteins are known to be associated with the regulation of H3K4me3 and H3K27me3. Expression studies indicate that TaVRN1 and TaFT1 are up-regulated by vernalization in winter wheat. This up-regulation is associated with increased level of the activator H3K4me3 with no change in the level of the repressor H3K27me3 at the promoter region. This study shows that the flowering transition induced by vernalization in winter wheat is associated with histone methylation at the promoter level of TaVRN1 and TaFT1 while the role of these markers is less evident in TaVRN2 repression. This may represent part of the cellular memory of vernalization in wheat.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-473
    Nombre del producto:
    Anti-trimethyl-Histone H3 (Lys4) Antibody
  • DNA methylation-histone modification relationships across the desmin locus in human primary cells. 19473514

    We present here an extensive epigenetic analysis of a 500 kb region, which encompasses the human desmin gene (DES) and its 5' locus control region (LCR), the only muscle-specific transcriptional regulatory element of this type described to date. These data complement and extend Encyclopaedia of DNA Elements (ENCODE) studies on region ENr133. We analysed histone modifications and underlying DNA methylation patterns in physiologically relevant DES expressing (myoblast/myotube) and non-expressing (peripheral blood mononuclear) primary human cells.We found that in expressing myoblast/myotube but not peripheral blood mononuclear cell (PBMC) cultures, histone H4 acetylation displays a broadly distributed enrichment across a gene rich 200 kb region whereas H3 acetylation localizes at the transcriptional start site (TSS) of genes. We show that the DES LCR and TSS of DES are enriched with hyperacetylated domains of acetylated histone H3, with H3 lysine 4 di- and tri-methylation (H3K4me2 and me3) exhibiting a different distribution pattern across this locus. The CpG island that extends into the first intron of DES is methylation-free regardless of the gene's expression status and in non-expressing PBMCs is marked with histone H3 lysine 27 tri-methylation (H3K27me3).Overall, our results constitute the first study correlating patterns of histone modifications and underlying DNA methylation of a muscle-specific LCR and its associated downstream gene region whilst additionally placing this within a much broader genomic context. Our results clearly show that there are distinct patterns of histone H3 and H4 acetylation and H3 methylation at the DES LCR, promoter and intragenic region. In addition, the presence of H3K27me3 at the DES methylation-free CpG only in non-expressing PBMCs may serve to silence this gene in non-muscle tissues. Generally, our work demonstrates the importance of using multiple, physiologically relevant tissue types that represent different expressing/non-expressing states when investigating epigenetic marks and that underlying DNA methylation status should be correlated with histone modification patterns when studying chromatin structure.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • «
  • <
  • 1
  • >
  • »