Millipore Sigma Vibrant Logo
 

live


3941 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (2,578)
  • (92)
  • (36)
  • (15)
  • (6)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Internalization and trafficking of cell surface proteoglycans and proteoglycan-binding ligands. 17394486

    Using multicolor live cell imaging in combination with biochemical assays, we have investigated an endocytic pathway mediated by cell surface proteoglycans, primary receptors for many cationic ligands. We have characterized this pathway for a variety of proteoglycan-binding ligands including cationic polymers, lipids and polypeptides. Following clathrin- and caveolin-independent, but flotillin- and dynamin-dependent internalization, proteoglycan-bound ligands associate with flotillin-1-positive vesicles and are efficiently trafficked to late endosomes. The route to late endosomes differs considerably from that following clathrin-mediated endocytosis. The proteoglycan-dependent pathway to late endosomes does not require microtubule-dependent transport or phosphatidyl-inositol-3-OH kinase-dependent sorting from early endosomes. The pathway taken by these ligands is identical to that taken by an antibody against heparan sulfate proteoglycans, suggesting that this mechanism may be used generally by cell surface proteoglycans and proteoglycan-binding ligands that lack secondary receptors.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB2040
    Nombre del producto:
    Anti-Heparin/Heparan Sulfate Antibody, clone T320.11
  • Live attenuated measles virus induces regression of human lymphoma xenografts in immunodeficient mice. 11389012

    Derivatives of the Edmonston-B strain of measles virus (MV-Ed) are safe, live attenuated measles virus (MV) vaccines that have been used worldwide for more than 30 years. The cytoreductive potential of MV-Ed has been investigated in murine models of both aggressive and indolent B-cell lymphoma in severe combined immunodeficient (SCID) mice. The rationale for these studies was generated by experience with viral fusogenic membrane glycoproteins as cytotoxic genes and the recognition of the potential of replicating viruses in the treatment of human malignancy. Intratumoral injection of both unmodified MV-Ed and a strain of MV-Ed genetically modified by the addition of a beta-galactosidase reporter gene (MVlacZ) induced regression of large established human lymphoma xenografts, in contrast to control therapy with UV-inactivated virus, in which all tumors progressed. The antitumor effect still occurred in the presence of passively transferred anti-MV antibody. Intravenous administration of MV also resulted in considerable slowing of tumor progression. Analysis of sections of residual tumor confirmed replication of MV within the tumors. Thus, the vaccine strain of MV mediates regression of large, established human B-cell lymphoma xenografts in SCID mice, and proof of principle is established that MV is oncolytic for lymphomas in vivo. Attenuated MVs may have value as a novel replicating-virus therapy for this group of disorders. (Blood. 2001;97:3746-3754)
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB8905
    Nombre del producto:
    Anti-Measles Blend Antibody, hemagglutinin, clones CV1, CV4
  • Common mechanisms for calorie restriction and adenylyl cyclase type 5 knockout models of longevity. 23020244

    Adenylyl cyclase type 5 knockout mice (AC5 KO) live longer and are stress resistant, similar to calorie restriction (CR). AC5 KO mice eat more, but actually weigh less and accumulate less fat compared with WT mice. CR applied to AC5 KO results in rapid decrease in body weight, metabolic deterioration, and death. These data suggest that despite restricted food intake in CR, but augmented food intake in AC5 KO, the two models affect longevity and metabolism similarly. To determine shared molecular mechanisms, mRNA expression was examined genome-wide for brain, heart, skeletal muscle, and liver. Significantly more genes were regulated commonly rather than oppositely in all the tissues in both models, indicating commonality between AC5 KO and CR. Gene ontology analysis identified many significantly regulated, tissue-specific pathways shared by the two models, including sensory perception in heart and brain, muscle function in skeletal muscle, and lipid metabolism in liver. Moreover, when comparing gene expression changes in the heart under stress, the glutathione regulatory pathway was consistently upregulated in the longevity models but downregulated with stress. In addition, AC5 and CR shared changes in genes and proteins involved in the regulation of longevity and stress resistance, including Sirt1, ApoD, and olfactory receptors in both young- and intermediate-age mice. Thus, the similarly regulated genes and pathways in AC5 KO and CR mice, particularly related to the metabolic phenotype, suggest a unified theory for longevity and stress resistance.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-131
    Nombre del producto:
    Anti-Sirt1(Sir2) Antibody
  • Precision-cut vibratome slices allow functional live cell imaging of the pulmonary neuroepithelial body microenvironment in fetal mice. 23080157

    We recently developed an ex vivo lung slice model that allows for confocal live cell imaging (LCI) of neuroepithelial bodies (NEBs) in postnatal mouse lungs (postnatal days 1-21 and adult). NEBs are morphologically well-characterized, extensively innervated groups of neuroendocrine cells in the airway epithelium, which are shielded from the airway lumen by 'Clara-like' cells. The prominent presence of differentiated NEBs from early embryonic development onwards, strongly suggests that NEBs may exert important functions during late fetal and neonatal life. The main goal of the present study was to adapt the current postnatal LCI lung slice model to enable functional studies of fetal mouse lungs (gestational days 17-20).In vibratome lung slices of prenatal mice, NEBs could be unequivocally identified with the fluorescent stryryl pyridinium dye 4-Di-2-ASP. Changes in the intracellular free calcium concentration and in mitochondrial membrane potential could be monitored using appropriate functional fluorescent indicators (e.g. Fluo-4).It is clear that the described fetal mouse lung slice model is suited for LCI studies of Clara cells, ciliated cells, and the NEB microenvironment, and offers excellent possibilities to further unravel the significance of NEBs during the prenatal and perinatal period.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5895
  • Characterization of the p53 response to oncogene-induced senescence. 18800172

    P53 activation can trigger various outcomes, among them reversible growth arrest or cellular senescence. It is a live debate whether these outcomes are influenced by quantitative or qualitative mechanisms. Furthermore, the relative contribution of p53 to Ras-induced senescence is also matter of controversy.This study compared situations in which different signals drove senescence with increasing levels of p53 activation. The study revealed that the levels of p53 activation do not determine the outcome of the response. This is further confirmed by the clustering of transcriptional patterns into two broad groups: p53-activated or p53-inactivated, i.e., growth and cellular arrest/senescence. Furthermore, while p53-dependent transcription decreases after 24 hrs in the presence of active p53, senescence continues. Maintaining cells in the arrested state for long periods does not switch reversible arrest to cellular senescence. Together, these data suggest that a Ras-dependent, p53-independent, second signal is necessary to induce senescence. This study tested whether PPP1CA (the catalytic subunit of PP1alpha), recently identified as contributing to Ras-induced senescence, might be this second signal. PPP1CA is induced by Ras; its inactivation inhibits Ras-induced senescence, presumably by inhibiting pRb dephosphorylation. Finally, PPP1CA seems to strongly co-localize with pRb only during senescence.The levels of p53 activation do not determine the outcome of the response. Rather, p53 activity seems to act as a necessary but not sufficient condition for senescence to arise. Maintaining cells in the arrested state for long periods does not switch reversible arrest to cellular senescence. PPP1CA is induced by Ras; its inactivation inhibits Ras-induced senescence, presumably by inhibiting pRb dephosphorylation. Finally, PPP1CA seems to strongly co-localize with pRb only during senescence, suggesting that PP1alpha activation during senescence may be the second signal contributing to the irreversibility of the senescent phenotype.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-636
    Nombre del producto:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301
  • A G1 checkpoint mediated by the retinoblastoma protein that is dispensable in terminal differentiation but essential for senescence. 20008551

    Terminally differentiated cell types are needed to live and function in a postmitotic state for a lifetime. Cellular senescence is another type of permanent arrest that blocks the proliferation of cells in response to genotoxic stress. Here we show that the retinoblastoma protein (pRB) uses a mechanism to block DNA replication in senescence that is distinct from its role in permanent cell cycle exit associated with terminal differentiation. Our work demonstrates that a subtle mutation in pRB that cripples its ability to interact with chromatin regulators impairs heterochromatinization and repression of E2F-responsive promoters during senescence. In contrast, terminally differentiated nerve and muscle cells bearing the same mutation fully exit the cell cycle and block E2F-responsive gene expression by a different mechanism. Remarkably, this reveals that pRB recruits chromatin regulators primarily to engage a stress-responsive G(1) arrest program.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3211
  • Establishment of Trophectoderm Cell Lines from Buffalo (Bubalus bubalis) Embryos of Different Sources and Examination of In Vitro Developmental Competence, Quality, Epige ... 26053554

    Despite being successfully used to produce live offspring in many species, somatic cell nuclear transfer (NT) has had a limited applicability due to very low (greater than 1%) live birth rate because of a high incidence of pregnancy failure, which is mainly due to placental dysfunction. Since this may be due to abnormalities in the trophectoderm (TE) cell lineage, TE cells can be a model to understand the placental growth disorders seen after NT. We isolated and characterized buffalo TE cells from blastocysts produced by in vitro fertilization (TE-IVF) and Hand-made cloning (TE-HMC), and compared their growth characteristics and gene expression, and developed a feeder-free culture system for their long-term culture. The TE-IVF cells were then used as donor cells to produce HMC embryos following which their developmental competence, quality, epigenetic status and gene expression were compared with those of HMC embryos produced using fetal or adult fibroblasts as donor cells. We found that although TE-HMC and TE-IVF cells have a similar capability to grow in culture, significant differences exist in gene expression levels between them and between IVF and HMC embryos from which they are derived, which may have a role in the placental abnormalities associated with NT pregnancies. Although TE cells can be used as donor cells for producing HMC blastocysts, their developmental competence and quality is lower than that of blastocysts produced from fetal or adult fibroblasts. The epigenetic status and expression level of many important genes is different in HMC blastocysts produced using TE cells or fetal or adult fibroblasts or those produced by IVF.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • A novel Th cell epitope of Candida albicans mediates protection from fungal infection. 22529294

    Fungal pathogens are a frequent cause of opportunistic infections. They live as commensals in healthy individuals but can cause disease when the immune status of the host is altered. T lymphocytes play a critical role in pathogen control. However, specific Ags determining the activation and function of antifungal T cells remain largely unknown. By using an immunoproteomic approach, we have identified for the first time, to our knowledge, a natural T cell epitope from Candida albicans. Isolation and sequencing of MHC class II-bound ligands from infected dendritic cells revealed a peptide that was recognized by a major population of all Candida-specific Th cells isolated from infected mice. Importantly, human Th cells also responded to stimulation with the peptide in an HLA-dependent manner but without restriction to any particular HLA class II allele. Immunization of mice with the peptide resulted in a population of epitope-specific Th cells that reacted not only with C. albicans but also with other clinically highly relevant species of Candida including the distantly related Candida glabrata. The extent of the reaction to different Candida species correlated with their degree of phylogenetic relationship to C. albicans. Finally, we show that the newly identified peptide acts as an efficient vaccine when used in combination with an adjuvant inducing IL-17A secretion from peptide-specific T cells. Immunized mice were protected from fatal candidiasis. Together, these results uncover a new immune determinant of the host response against Candida ssp. that could be exploited for the development of antifungal vaccines and immunotherapies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    5097
  • Three-dimensional scaffolding to investigate neuronal derivatives of human embryonic stem cells. 22767243

    Access to unlimited numbers of live human neurons derived from stem cells offers unique opportunities for in vitro modeling of neural development, disease-related cellular phenotypes, and drug testing and discovery. However, to develop informative cellular in vitro assays, it is important to consider the relevant in vivo environment of neural tissues. Biomimetic 3D scaffolds are tools to culture human neurons under defined mechanical and physico-chemical properties providing an interconnected porous structure that may potentially enable a higher or more complex organization than traditional two-dimensional monolayer conditions. It is known that even minor variations in the internal geometry and mechanical properties of 3D scaffolds can impact cell behavior including survival, growth, and cell fate choice. In this report, we describe the design and engineering of 3D synthetic polyethylene glycol (PEG)-based and biodegradable gelatin-based scaffolds generated by a free form fabrication technique with precise internal geometry and elastic stiffnesses. We show that human neurons, derived from human embryonic stem (hESC) cells, are able to adhere to these scaffolds and form organoid structures that extend in three dimensions as demonstrated by confocal and electron microscopy. Future refinements of scaffold structure, size and surface chemistries may facilitate long term experiments and designing clinically applicable bioassays.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5622
    Nombre del producto:
    Anti-Microtubule-Associated Protein 2 (MAP2) Antibody
  • Preparation and imaging of nuclear spreads from cells of the zebrafish embryo. Evidence for large degradation intermediates in apoptosis. 9567200

    We describe a method for preparing nuclear spreads from cells of live, unfixed zebrafish embryos at the late-gastrula (approximately 8000 cell) stage of development. The method consists of a sequence of four steps: (1) a slow, gentle lysis, in low to moderate salt concentration, of cells and then nuclei, to release DNA-containing fibres; (2) spreading of the released fibres by a transverse fluid flow; (3) electrostatic, and possibly also covalent, attachment of the spread fibers to poly(L-lysine)-coated glass microscope slides; and (4) continued incubation to produce periodic cleavage of the DNA within the fibres, apparently through activation of endogenous nucleases. The nuclear spreads are imaged with epifluorescence, at a spatial resolution approaching the Rayleigh limit (approximately 230 nm for blue light). The epifluorescent signal is provided from Hoechst 33,258 bound specifically to the DNA, from a dye-coupled antibody conjugate bound specifically to histone H1 in the fibres, or from a DNA nick end-labelling assay. The spontaneous cleavage of DNA-containing fibres in step (4) of the above procedure can be blocked by the chelating agents EGTA and EDTA, by the caspase-2,3,7 inhibitor N-acetyl-Asp-Glu-Val-Asp-aldehyde, and by the caspase-1,4,5 inhibitors N-acetyl-Tyr-Val-Ala-Asp-aldehyde and N-acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone. These data suggest that the spontaneous cleavage of fibres is catalysed by nucleases that become activated through a caspase-mediated mechanism. The involvement of caspase-dependent nucleases would suggest that an apoptosis pathway is activated in the spreads during their prolonged incubation. If bona fide apoptosis is induced in living zebrafish embryos by treatment with camptothecin (a topoisomerase I poison), and then nuclear spreads are prepared, we observe a similar fragmentation of the spread fibres. However, in this case the fragmentation is more rapid and complete. We hypothesize that, during the early phase of apoptosis, one or more endogenous nucleases are activated by a caspase-mediated mechanism. The nuclease(s) then specifically recognize and cleave a susceptible, periodically repeating feature of interphase chromatin.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1276
    Nombre del producto:
    Anti-Nuclei & Chromosomes Antibody, histone H1 protein, clone 1415-1