Millipore Sigma Vibrant Logo
 

scr001 OR scr002 OR SCR078 OR FCSC100107


51 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (51)
Páginas (0)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (38)
  • (9)
  • (1)
  • (1)
  • (1)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Reprogrammed keratinocytes from elderly type 2 diabetes patients suppress senescence genes to acquire induced pluripotency. 22308265

    Nuclear reprogramming enables patient-specific derivation of induced pluripotent stem (iPS) cells from adult tissue. Yet, iPS generation from patients with type 2 diabetes (T2D) has not been demonstrated. Here, we report reproducible iPS derivation of epidermal keratinocytes (HK) from elderly T2D patients. Transduced with human OCT4, SOX2, KLF4 and c-MYC stemness factors under serum-free and feeder-free conditions, reprogrammed cells underwent dedifferentiation with mitochondrial restructuring, induction of endogenous pluripotency genes - including NANOG, LIN28, and TERT, and down-regulation of cytoskeletal, MHC class I- and apoptosis-related genes. Notably, derived iPS clones acquired a rejuvenated state, characterized by elongated telomeres and suppressed senescence-related p15INK4b/p16INK4a gene expression and oxidative stress signaling. Stepwise guidance with lineage-specifying factors, including Indolactam V and GLP-1, redifferentiated HK-derived iPS clones into insulin-producing islet-like progeny. Thus, in elderly T2D patients, reprogramming of keratinocytes ensures a senescence-privileged status yielding iPS cells proficient for regenerative applications.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Human diseased arteries contain cells expressing leukocytic and embryonic stem cell markers. 18439939

    Recent evidence suggests that smooth muscle cells within the intima of diseased human blood vessels of the elderly population contain the embryonic form of smooth muscle cells. We wanted to explore the idea that human diseased vessels may contain other primitive cell types, such as pluripotent embryonic stem cells and hematopoietic stem cells. Radial and internal mammary arteries were collected from patients undergoing coronary artery bypass surgery; and coronary arteries, from hearts at autopsy and transplant. Immunohistochemistry was used to identify the embryonic stem cell markers Octomer-4; stage-specific embryonic antigens 1, 3, and 4; TRA-1-60; and TRA-1-81, and the leukocytic markers CD34, CD14, CD133, and CD64 in all vessels. We found that diseased human radial arteries contained the highest numbers of cells in the media- and intima-expressing markers of embryonic and leukocytic origin compared with diseased human coronary arteries. In nondiseased human vessels (internal mammary arteries), such cells were rarely observed. Granulation tissue within the diseased human arteries contained similar cells, and the angiogenic vessel endothelial cell layer also expressed these markers. It is concluded that diseased human blood vessels contain cells that express markers from leukocytic and embryonic origin. These results suggest that cells within human arteries might be able to differentiate into various cell types and that blood vessels might be a reservoir for such cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SCR002
  • Co-localization of angiotensin-converting enzyme 2-, octomer-4- and CD34-positive cells in rabbit atherosclerotic plaques. 18192339

    Angiotensin-converting enzyme 2 (ACE2) is a novel enzyme with possible implications in the treatment of blood pressure disorders. Recent evidence suggests that an upregulation of ACE2 can be stimulated by all-trans retinoic acid (at-RA); however, at-RA also affects regulation of the stem-cell marker octomer-4 (Oct-4) and thus cellular differentiation. We have previously shown that smooth muscle cells and macrophages present within rabbit atherosclerotic plaques are positive for ACE2, Oct-4 and the haematopoietic stem-cell marker CD34. Thus, to provide evidence that possible at-RA treatment could affect both plaque cellular biology (via effects on cellular differentiation) and blood pressure (via ACE2), it is vital to show that cells with atherosclerotic plaques co-express all three markers. Thus, we sought to provide evidence that a subset of cells within atherosclerotic plaques is positive for ACE2, Oct-4 and CD34. We used New Zealand White rabbits that were fed a control diet supplemented with 0.5% cholesterol plus 1% methionine for 4 weeks and then allowed to consume a normal diet for 10 weeks. Immunohistochemistry was performed by standard techniques. We report that ACE2, Oct-4 and CD34 were all present within atherosclerotic plaques. Although macrophages were positive for all three markers, spindle-shaped cells in the media did not show all three markers. The endothelium overlying normal arterial wall showed positive Oct-4 and ACE2 immunoreactivity, but CD34 immunoreactivity was patchy, indicating that such cells might not have fully differentiated. It is concluded that cells in atherosclerotic plaques express co-express ACE2, Oct-4 and CD34. Further studies aimed at establishing the effects of all-trans retinoic acid on blood pressure and atherosclerotic cell differentiation are warranted.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Derivation of human embryonic stem cells in xeno-free conditions. 18453244

    Human embryonic stem cells (hESC) have the potential to treat a wide range of diseases. Currently, the use of existing hESC lines in human clinical applications is limited, as they are derived from blastocysts subjected to immunosurgery with animal derived antibodies, and are maintained on mouse embryonic feeder (MEF) cells, in the presence of either fetal calf serum (FCS) or on Matrigel or with conditioned media from MEFs. Successful derivation of hESCs in xeno-free conditions is crucial in advancing stem cell therapy applications. Two hESC lines, one from chromosomally abnormal embryos and another cell line from normal embryos from the inner cell mass of human blastocysts are derived using a culture media that had 20% serum replacement (SR) and human FGF2 on human foreskin fibroblasts as feeder cells. Derivation and characterization of such xenofree hESCs suitable for clinical studies is described in this chapter.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SCR004
    Nombre del producto:
    Alkaline Phosphatase Detection Kit
  • Derivation and maintenance of human embryonic stem cells from poor-quality in vitro fertilization embryos. 18451800

    Human embryonic stem (hES) cells are self-renewing, pluripotent cells that are valuable research tools and hold promise for use in regenerative medicine. Most hES cell lines are derived from cryopreserved human embryos that were created during in vitro fertilization (IVF) and are in excess of clinical need. Embryos that are discarded during the IVF procedure because of poor morphology and a low likelihood for generating viable pregnancies or surviving the cryopreservation process are also a viable source of hES cells. In this protocol, we describe how to derive novel hES cells from discarded poor-quality embryos and how to maintain the hES cell lines.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB4303
  • Generation of transgene-free lung disease-specific human induced pluripotent stem cells using a single excisable lentiviral stem cell cassette. 20715179

    The development of methods to achieve efficient reprogramming of human cells while avoiding the permanent presence of reprogramming transgenes represents a critical step toward the use of induced pluripotent stem cells (iPSC) for clinical purposes, such as disease modeling or reconstituting therapies. Although several methods exist for generating iPSC free of reprogramming transgenes from mouse cells or neonatal normal human tissues, a sufficiently efficient reprogramming system is still needed to achieve the widespread derivation of disease-specific iPSC from humans with inherited or degenerative diseases. Here, we report the use of a humanized version of a single lentiviral stem cell cassette vector to accomplish efficient reprogramming of normal or diseased skin fibroblasts obtained from humans of virtually any age. Simultaneous transfer of either three or four reprogramming factors into human target cells using this single vector allows derivation of human iPSC containing a single excisable viral integration that on removal generates human iPSC free of integrated transgenes. As a proof of principle, here we apply this strategy to generate >100 lung disease-specific iPSC lines from individuals with a variety of diseases affecting the epithelial, endothelial, or interstitial compartments of the lung, including cystic fibrosis, α-1 antitrypsin deficiency-related emphysema, scleroderma, and sickle-cell disease. Moreover, we demonstrate that human iPSC generated with this approach have the ability to robustly differentiate into definitive endoderm in vitro, the developmental precursor tissue of lung epithelia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SCR001
    Nombre del producto:
    ES Cell Characterization Kit
  • Establishment of rat embryonic stem cells and making of chimera rats. 18665239

    The rat is a reference animal model for physiological studies and for the analysis of multigenic human diseases such as hypertension, diabetes, neurological disorders, and cancer. The rats have long been used in extensive chemical carcinogenesis studies. Thus, the rat embryonic stem (rES) cell is an important resource for the study of disease models. Attempts to derive ES cells from various mammals, including the rat, have not succeeded. Here we have established two independent rES cells from Wister rat blastocysts that have undifferentiated characters such as Nanog and Oct3/4 genes expression and they have stage-specific embryonic antigen (SSEA) -1, -3, -4, and TRA-1-81 expression. The cells were successfully cultured in an undifferentiated state and can be possible over 18 passages with maintaining more than 40% of normal karyotype. Their pluripotent potential was confirmed by the differentiation into derivatives of the endoderm, mesoderm, and ectoderm. Most importantly, the rES cells are capable of producing chimera rats. Therefore, we established pluripotent rES cell lines that are widely used to produce genetically modified experimental rats for study of human diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Cardiac commitment of primate embryonic stem cells. 18772864

    Primate nonhuman and human embryonic stem (ES) cells provide a powerful model of early cardiogenesis. Furthermore, engineering of cardiac progenitors or cardiomyocytes from ES cells offers a tool for drug screening in toxicology or to search for molecules to improve and scale up the process of cardiac differentiation using high-throughput screening technology, as well as a source of cell therapy of heart failure. Spontaneous differentiation of ES cells into cardiomyocytes is, however, limited. Herein, we describe a simple protocol to commit both rhesus and human ES cells toward a cardiac lineage and to sort out early cardiac progenitors. Primate ES cells are challenged for 4 d with the cardiogenic morphogen bone morphogenetic protein 2 (BMP2) and sorted out using anti-SSEA-1 antibody-conjugated magnetic beads. Cardiac progenitor cells can be generated and isolated in 4 d using this protocol.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo