Millipore Sigma Vibrant Logo
 

supplement


830 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (414)
  • (252)
  • (22)
  • (13)
  • (12)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. 22067901

    Benfotiamine, a lipid-soluble analogue of vitamin B1, is a potent antioxidant that is used as a food supplement for the treatment of diabetic complications. Our recent study (U.C. Yadav et al., Free Radic. Biol. Med. 48:1423-1434, 2010) indicates a novel role for benfotiamine in the prevention of bacterial endotoxin, lipopolysaccharide (LPS)-induced cytotoxicity and inflammatory response in murine macrophages. Nevertheless, it remains unclear how benfotiamine mediates anti-inflammatory effects. In this study, we investigated the anti-inflammatory role of benfotiamine in regulating arachidonic acid (AA) pathway-generated inflammatory lipid mediators in RAW264.7 macrophages. Benfotiamine prevented the LPS-induced activation of cPLA2 and release of AA metabolites such as leukotrienes, prostaglandin E2, thromboxane 2 (TXB2), and prostacyclin (PGI2) in macrophages. Further, LPS-induced expression of AA-metabolizing enzymes such as COX-2, LOX-5, TXB synthase, and PGI2 synthase was significantly blocked by benfotiamine. Furthermore, benfotiamine prevented the LPS-induced phosphorylation of ERK1/2 and expression of transcription factors NF-κB and Egr-1. Benfotiamine also prevented the LPS-induced oxidative stress and protein-HNE adduct formation. Most importantly, compared to specific COX-2 and LOX-5 inhibitors, benfotiamine significantly prevented LPS-induced macrophage death and monocyte adhesion to endothelial cells. Thus, our studies indicate that the dual regulation of the COX and LOX pathways in AA metabolism could be a novel mechanism by which benfotiamine exhibits its potential anti-inflammatory response.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • C-28/I2 and T/C-28a2 chondrocytes as well as human primary articular chondrocytes express sex hormone and insulin receptors--Useful cells in study of cartilage metabolism ... 20971625

    Sex hormones and insulin have been implicated in articular cartilage metabolism. To supplement previous findings on the regulation of matrix synthesis with 17?-estradiol and insulin and to find a possible model to study cartilage metabolism in vitro, we evaluated the expression of estrogen receptors ? and ? (ER?, ER?), androgen receptor (AR) and insulin receptor (IR), in immortalized C-28/I2 and T/C-28a2 chondrocytes and in human primary articular cartilage cells. Chondrocytes were treated with increasing concentrations of 17?-estradiol, dihydrotestosterone or insulin and analyzed by means of RT-PCR and Western blotting. Both cell lines as well as human articular chondrocytes expressed ER ? and ?, AR and IR at mRNA and protein levels. In immortalized C-28/I2 chondrocytes, we showed that increasing concentrations of 17?-estradiol diminished the 95kDa band of IR. Since 17?-estradiol suppresses insulin-induced proline incorporation and type II collagen synthesis, as we have previously demonstrated, our findings give the first clue that 17?-estradiol may have negative effects on cartilage anabolism triggered by insulin during hormonal imbalance. Compared to chondrocytes cultured without hormones, immunostaining for ER?/?, AR and IR was decreased in both cell lines after incubation of cells with the receptor-specific hormones. It can be assumed that C-28/I2 and T/C-28a2 chondrocytes interact with the respective hormones. Our findings provide a reproducible model for investigating sex hormone and insulin receptors, which are present in low concentrations in articular chondrocytes, in the tissue-specific context of cartilage metabolism.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1410
  • Culture of human mesenchymal stem cells using a candidate pharmaceutical grade xeno-free cell culture supplement derived from industrial human plasma pools. 25889980

    Fetal bovine serum (FBS) is an animal product used as a medium supplement. The animal origin of FBS is a concern if cultured stem cells are to be utilized for human cell therapy. Therefore, a substitute for FBS is desirable. In this study, an industrial, xeno-free, pharmaceutical-grade supplement for cell culture (SCC) under development at Grifols was tested for growth of human mesenchymal stem cells (hMSCs), cell characterization, and differentiation capacity.SCC is a freeze-dried product obtained through cold-ethanol fractionation of industrial human plasma pools from healthy donors. Bone marrow-derived hMSC cell lines were obtained from two commercial suppliers. Cell growth was evaluated by culturing hMSCs with commercial media or media supplemented with SCC or FBS. Cell viability and cell yield were assessed with an automated cell counter. Cell surface markers were studied by indirect immunofluorescence assay. Cells were cultured then differentiated into adipocytes, chondrocytes, osteoblasts, and neurons, as assessed by specific staining and microscopy observation.SCC supported the growth of commercial hMSCs. Starting from the same number of seeded cells in two consecutive passages of culture with medium supplemented with SCC, hMSC yield and cell population doubling time were equivalent to the values obtained with the commercial medium and was consistent among lots. The viability of hMSCs was higher than 90%, while maintaining the characteristic phenotype of undifferentiated hMSCs (positive for CD29, CD44, CD90, CD105, CD146, CD166 and Stro-1; negative for CD14 and CD19). Cultured hMSCs maintained the potential for differentiation into adipocytes, chondrocytes, osteoblasts, and neurons.The tested human plasma-derived SCC sustains the adequate growth of hMSCs, while preserving their differentiation capacity. SCC can be a potential candidate for cell culture supplement in advanced cell therapies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Fas-mediated apoptosis is suppressed by calf serum in cultured bovine luteal cells. 17435830

    Calf serum (CS) is a common supplement used in cell culture. It has been suggested that CS contains substances protecting cells against apoptosis. To examine whether a culture system including CS is appropriate for studying apoptosis in bovine luteal cells, we examined the influence of CS on the expression of Fas, bcl-2 and bax gene. Since progesterone (P(4)) is known to be an anti-apoptotic factor in bovine luteal cells, the present study was carried out to examine the P(4) effect on apoptosis. Bovine mid-luteal cells were exposed to Fas ligand (Fas L) in the presence or in the absence of P(4) antagonist (onapristone, OP) in a basal medium (BM) containing 5% CS (BM-CS) or BM containing 0.1% BSA (BM-BSA). Although Fas L alone, OP alone or Fas L plus OP did not show any cytotoxic effect on the cells cultured in BM-CS, administration of OP or OP in combination with Fas L resulted in the killing of 30% and 55% of the cells cultured in BM-BSA medium, respectively (p0.05). Concomitantly, CS inhibited bax mRNA expression and stimulated bcl-2 expression in the cells (p0.05). Moreover, in the cells cultured with BM-CS, Fas mRNA expression was smaller than that of cells incubated in BM-BSA medium (p0.05). The overall results suggest that CS suppressed Fas-mediated cell death in cultured bovine luteal cells by promoting the ratio of bcl-2 to bax expression and by inhibiting Fas expression. Therefore, it may be suggested that CS contains such anti-apoptotic substances (growth factors) amplifying the cell survival pathways in the bovine corpus luteum (CL) in vitro.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-351
    Nombre del producto:
    Anti-Fas Antibody, clone 7C10
  • PHF19 and Akt control the switch between proliferative and invasive states in melanoma. 22487681

    Melanoma tumor cells shift between proliferative and invasive states based on their plasticity and microenvironmental conditions. Our team has shown that melanoma cells, grown as spheroids in a neural cell crest medium, polarize toward an invasive phenotype, characterized by a higher motility, a poor proliferation rate and a gain of pluripotency gene expression (Nanog and Oct4) when compared with cells grown in two dimensions in a serum-contaning medium. In agreement with the phenotypic switching hypothesis, most of these features are reversible. Microarray studies comparing two- vs. three-dimensional cultures revealed the downregulation of a polycomb-like protein, PHF19 (PHD finger protein 19), in the spheroids. As Polycomb proteins are involved in the epigenetic control of gene expression, we hypothesized that PHF19 might play a role in the switch between proliferative and invasive phenotypes. In this report, we show that PHF19 silencing reduces the cell proliferation rate and increases the transendothelial migration capacities of melanoma cell lines. However, PHF19 does not modulate the transcription level of Oct4 and Nanog. In the search of an upstream transcriptional regulator of the above genes, we identified the Akt signaling cascade as an inhibitor of Oct4 and Nanog expression and an activator for PHF19 expression. Through chromatin immunoprecipitation, we further provide evidence that phospho-Akt is part of the transcriptional complex associated to the promoters of all three genes. Our data therefore indicate the role of PHF19 and its upstream regulator, Akt, in the phenotype switch of melanoma cells from proliferative to invasive states.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501R
    Nombre del producto:
    Anti-Actin Antibody,clone C4
  • Aggregates assembled from overexpression of wild-type alpha-synuclein are not toxic to human neuronal cells. 18957893

    Filamentous alpha-synuclein (alpha-syn) aggregates form Lewy bodies (LBs), the neuropathologic hallmarks of Parkinson disease and related alpha-synucleinopathies. To model Lewy body-associated neurodegeneration, we generated transfectant 3D5 of human neuronal-type in which expression of human wild-type alpha-syn is regulated by the tetracycline off (TetOff)-inducible mechanism. Retinoic acid-elicited differentiation promoted assembly of alpha-syn aggregates after TetOff induction in 3D5 cells. The aggregates accumulated 14 days after TetOff induction were primarily soluble and showed augmented thioflavin affinity with concomitant phosphorylation and nitration of alpha-syn. Extension of the induction led to the formation of sarkosyl-insoluble aggregates that appeared concurrently with thioflavin-positive inclusions. Immunoelectron microscopy revealed that the inclusions consist of dense bundles of 8- to 12-nm alpha-syn fibrils that congregate in the perikarya and resemble Lewy bodies. Most importantly, accumulation of soluble and insoluble aggregates after TetOff induction for 14 and 28 days was reversible and did not compromise the viability of the cells or their subsequent survival. Thus, this chemically defined culture paradigm provides a useful means to elucidate how oxidative injuries and other insults that are associated with aging promote alpha-syn to self-assemble or interact with other molecules leading to neuronal degeneration in alpha-synucleinopathies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5038P
    Nombre del producto:
    Anti-Synuclein α Antibody
  • Vasculogenic mimicry and its clinical significance in medulloblastoma. 22258034

    Vasculogenic mimicry (VM), a process involving the formation of a tubular structure by highly invasive and genetically dysregulated tumor cells, can supplement the function of blood vessels to transport nutrients and oxygen to maintain the growth of tumor cells in many malignant tumors. We aimed to explore the existence of VM and its clinical significance in medulloblastoma in this study. VM was identified in 9 out of 41 (22%) medulloblastoma tissues. Immunohistochemical studies revealed that the presence of VM was associated with the expression of MMP-2, MMP-14, EphA2 and laminin 5γ2. Tumor tissues with VM were associated with lower microvessel density (MVD), which was indirect evidence of the blood supply function of VM. Survival analysis and log-rank tests showed that patients with VM had shorter overall survival time than those without VM. Multivariate analysis and the Cox proportional hazards model identified VM as independent prognostic factor for overall survival. Our results confirmed the existence of VM for the first time and revealed that VM is a strong independent prognostic factor for survival in patients with medulloblastoma.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-480
    Nombre del producto:
    Anti-Eck/EphA2 Antibody, clone D7
  • MicroRNA-29b suppresses tumor angiogenesis, invasion, and metastasis by regulating matrix metalloproteinase 2 expression. 21793034

    Hepatocellular carcinoma (HCC) is a highly vascularized tumor with frequent intrahepatic metastasis. Active angiogenesis and metastasis are responsible for rapid recurrence and poor survival of HCC. We previously found that microRNA-29b (miR-29b) down-regulation was significantly associated with poor recurrence-free survival of HCC patients. Therefore, the role of miR-29b in tumor angiogenesis, invasion, and metastasis was further investigated in this study using in vitro capillary tube formation and transwell assays, in vivo subcutaneous and orthotopic xenograft mouse models, and Matrigel plug assay, and human HCC samples. Both gain- and loss-of-function studies showed that miR-29b dramatically suppressed the ability of HCC cells to promote capillary tube formation of endothelial cells and to invade extracellular matrix gel in vitro. Using mouse models, we revealed that tumors derived from miR-29b-expressed HCC cells displayed significant reduction in microvessel density and in intrahepatic metastatic capacity compared with those from the control group. Subsequent investigations revealed that matrix metalloproteinase-2 (MMP-2) was a direct target of miR-29b. The blocking of MMP-2 by neutralizing antibody or RNA interference phenocopied the antiangiogenesis and antiinvasion effects of miR-29b, whereas introduction of MMP-2 antagonized the function of miR-29b. We further disclosed that miR-29b exerted its antiangiogenesis function, at least partly, by suppressing MMP-2 expression in tumor cells and, in turn, impairing vascular endothelial growth factor receptor 2-signaling in endothelial cells. Consistently, in human HCC tissues and mouse xenograft tumors miR-29b level was inversely correlated with MMP-2 expression, as well as tumor angiogenesis, venous invasion, and metastasis. Conclusion: miR-29b deregulation contributes to angiogenesis, invasion, and metastasis of HCC. Restoration of miR-29b represents a promising new strategy in anti-HCC therapy. (HEPATOLOGY 2011;).Copyright © 2011 American Association for the Study of Liver Diseases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3308
    Nombre del producto:
    Anti-MMP-2 Antibody, a.a. 468-483 hMMP2, clone 42-5D11