Skip to Content
Merck

278327

Lithium

greener alternative

wire, diam. 3.2 mm, in mineral oil, ≥98%

Sign In to View Organizational & Contract Pricing.

Select a Size


About This Item

Linear Formula:
Li
CAS Number:
Molecular Weight:
6.94
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12141803
EC Number:
231-102-5
MDL number:
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist
Technical Service
Need help? Our team of experienced scientists is here for you.
Let Us Assist

Product Name

Lithium, wire, diam. 3.2 mm, in mineral oil, ≥98%

InChI key

WHXSMMKQMYFTQS-UHFFFAOYSA-N

InChI

1S/Li

SMILES string

[Li]

assay

≥98%

form

wire

contains

copper as stabilizer

reaction suitability

reagent type: reductant

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

resistivity

9.446 μΩ-cm, 20°C

diam.

3.2 mm

impurities

0.5-1% sodium

bp

1342 °C (lit.)

mp

180 °C (lit.)

density

0.534 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

greener alternative category

Looking for similar products? Visit Product Comparison Guide

Application

Lithium wire can be used as a counter and a reference electrode for the fabrication of lithium-ion batteries and supercapacitors.

General description

Lithium wire, dia. 3.2 mm is a class of electrode material that can be used in the fabrication of lithium-ion batteries. Lithium-ion batteries consist of anode, cathode, and electrolyte with a charge-discharge cycle. These materials enable the formation of greener and sustainable batteries for electrical energy storage.
We are committed to bringing you Greener Alternative Products, which adhere to one or more of The 12 Principles of Greener Chemistry. This product has been enhanced for energy efficiency. Find details here.

pictograms

FlameCorrosion

signalword

Danger

hcodes

Hazard Classifications

Skin Corr. 1B - Water-react 1

supp_hazards

Storage Class

4.3 - Hazardous materials which set free flammable gases upon contact with water

wgk

WGK 1

flash_point_f

Not applicable

flash_point_c

Not applicable


Choose from one of the most recent versions:

Certificates of Analysis (COA)

Lot/Batch Number

Don't see the Right Version?

If you require a particular version, you can look up a specific certificate by the Lot or Batch number.

Already Own This Product?

Find documentation for the products that you have recently purchased in the Document Library.

Visit the Document Library

Flexible and stretchable lithium-ion batteries and supercapacitors based on electrically conducting carbon nanotube fiber springs
Zhang Y, et al.
Angewandte Chemie (International Edition in English), 53(52), 14564-14568 (2014)
Super-stretchy lithium-ion battery based on carbon nanotube fiber
Zhang Y, et al.
Journal of Material Chemistry A, 2(29), 11054-11059 (2014)
Advances in Wearable Fiber-Shaped Lithium-Ion Batteries
Zhang Y, et al.
Advanced Materials, 28(22), 4524-4531 (2016)
Dongyun Chen et al.
Nanoscale, 5(17), 7890-7896 (2013-07-16)
Two-dimensional nanosheets can leverage on their open architecture to support facile insertion and removal of Li(+) as lithium-ion battery electrode materials. In this study, two two-dimensional nanosheets with complementary functions, namely nitrogen-doped graphene and few-layer WS2, were integrated via a
Jiehua Liu et al.
Advanced materials (Deerfield Beach, Fla.), 24(30), 4097-4111 (2012-04-17)
Two dimensional nanoarchitectures are of great interest in lithium storage for energy-storage devices, in particular lithium-ion batteries, due to its shortened paths for fast lithium ion diffusion and large exposed surface offering more lithium-insertion channels. Their competitive lithium-storage features provide

Articles

Solid oxide fuel cells and electrolyzers show potential for chemical-to-electrical energy conversion, despite early development stages.

Ionic liquid electrolytes explored for rechargeable batteries' advancement; future IL development discussed.

Professor Qiao's review explores stable microstructures for lithium metal fluoride batteries, advancing energy storage technologies.

Nanomaterials for Energy Storage in Lithium-ion Battery Applications

See All

Our team of scientists has experience in all areas of research including Life Science, Material Science, Chemical Synthesis, Chromatography, Analytical and many others.

Contact Technical Service