Millipore Sigma Vibrant Logo
 

+drug


1848 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (1,325)
  • (20)
  • (13)
  • (10)
  • (5)
  • Show More

Analyte

  • (1)
  • (1)

Application Type

  • (1)

General Class

  • (1)

Application Method

  • (1)
  • (1)
  • (1)
  • (1)
  • (1)

Specific Class

  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Inhibition of apolipoprotein B and triglyceride secretion in human hepatoma cells (HepG2). 8827519

    Apolipoprotein B (apoB), the major protein component of triglyceride-rich lipoproteins, is assembled into a lipoprotein particle via a complex, multistep process. Recent studies indicate that triglyceride-rich lipoprotein assembly requires the activity of the heterodimeric protein, microsomal triglyceride transfer protein (MTP). We identified a novel inhibitor of apolipoprotein B secretion using the human hepatoma cell line, HepG2. CP-10447, a derivative of the hypnotic drug methaqualone (Quaalude), inhibited apoB secretion from HepG2 cells with an IC50 of approximately 5 microM. CP-10447 also inhibited apoB secretion from Caco-2 cells, a model of intestinal lipoprotein production. In experiments using [3H]glycerol as a precursor for triglyceride synthesis, CP-10447 (20 microM) inhibited radiolabeled triglyceride secretion by approximately 83% (P < 0.0001) in HepG2 cells and 76% (P < 0.05) in Caco-2 cells with no effect on radiolabel incorporation into cellular triglyceride, indicating that CP-10447 inhibited triglyceride secretion without affecting triglyceride synthesis. RNA solution hybridization assay indicated that CP-10447 did not affect apoB or apoA-I mRNA levels. Pulse-chase experiments in HepG2 cells confirmed that CP-10447 inhibited the secretion of apoB (not its synthesis) without affecting secretion of total proteins or albumin and suggested that CP-10447 stimulates the early intracellular degradation of apoB in the endoplasmic reticulum (ER). Further studies demonstrated that CP-10447 is a potent inhibitor of human liver microsomal triglyceride transfer activity (IC50 approximately 1.7 microM) in an in vitro assay containing artificial liposomes and partially purified human MTP. These data suggest that CP-10447 may inhibit apoB and triglyceride secretion by inhibiting MTP activity and stimulating the early ER degradation of apoB. CP-10447 should provide a useful tool for further study of the mechanisms of apoB secretion and triglyceride-rich lipoprotein assembly.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • CCT241533 is a potent and selective inhibitor of CHK2 that potentiates the cytotoxicity of PARP inhibitors. 21239475

    CHK2 is a checkpoint kinase involved in the ATM-mediated response to double-strand DNA breaks. Its potential as a drug target is still unclear, but inhibitors of CHK2 may increase the efficacy of genotoxic cancer therapies in a p53 mutant background by eliminating one of the checkpoints or DNA repair pathways contributing to cellular resistance. We report here the identification and characterization of a novel CHK2 kinase inhibitor, CCT241533. X-ray crystallography confirmed that CCT241533 bound to CHK2 in the ATP pocket. This compound inhibits CHK2 with an IC(50) of 3 nmol/L and shows minimal cross-reactivity against a panel of kinases at 1 μmol/L. CCT241533 blocked CHK2 activity in human tumor cell lines in response to DNA damage, as shown by inhibition of CHK2 autophosphorylation at S516, band shift mobility changes, and HDMX degradation. CCT241533 did not potentiate the cytotoxicity of a selection of genotoxic agents in several cell lines. However, this compound significantly potentiates the cytotoxicity of two structurally distinct PARP inhibitors. Clear induction of the pS516 CHK2 signal was seen with a PARP inhibitor alone, and this activation was abolished by CCT241533, implying that the potentiation of PARP inhibitor cell killing by CCT241533 was due to inhibition of CHK2. Consequently, our findings imply that CHK2 inhibitors may exert therapeutic activity in combination with PARP inhibitors.
    Document Type:
    Reference
    Product Catalog Number:
    05-345
    Product Catalog Name:
    Anti-p21/WAF1/Cip1 Antibody
  • AR42, a novel histone deacetylase inhibitor, as a potential therapy for vestibular schwannomas and meningiomas. 21778190

    Neurofibromatosis type 2 (NF2) is an autosomal-dominant disease that results in the formation of bilateral vestibular schwannomas (VSs) and multiple meningiomas. Treatment options for NF2-associated tumors are limited, and to date, no medical therapies are FDA approved. The ideal chemotherapeutic agent would inhibit both VS and meningiomas simultaneously. The objectives of this study are (1) to test the efficacy of AR42, a novel histone deacetylase inhibitor, to inhibit VS and meningioma growth and (2) to investigate this drug's mechanisms of action. Primary cultures of human VS and meningioma cells were established. Nf2-deficient mouse schwannoma and benign human meningioma Ben-Men-1 cells were also cultured. Cells were treated with AR42, and the drug's effects on proliferation and the cell cycle were analyzed using a methanethiosulfonate assay and flow cytometry, respectively. Human phospho-kinase arrays and Western blots were used to evaluate the effects of AR42 on intracellular signaling. The in vivo efficacy of AR42 was investigated using schwannoma xenografts. Tumor volumes were quantified using high-field, volumetric MRI, and molecular target analysis was performed using immunohistochemistry. AR42 inhibited the growth of primary human VS and Nf2-deficient mouse schwannoma cells with a half maximal inhibitory concentration (IC(50)) of 500 nM and 250-350 nM, respectively. AR42 also inhibited primary meningioma cells and the benign meningioma cell line, Ben-Men-1, with IC(50) values of 1.5 µM and 1.0 µM, respectively. AR42 treatment induced cell-cycle arrest at G(2) and apoptosis in both VS and meningioma cells. Also, AR42 exposure decreased phosphorylated Akt in schwannoma and meningioma cells. In vivo treatment with AR42 inhibited the growth of schwannoma xenografts, induced apoptosis, and decreased Akt activation. The potent growth inhibitory activity of AR42 in schwannoma and meningioma cells suggests that AR42 should be further evaluated as a potential treatment for NF2-associated tumors.
    Document Type:
    Reference
    Product Catalog Number:
    06-599
    Product Catalog Name:
    Anti-acetyl-Histone H3 Antibody
  • Lipid rafts remodeling in estrogen receptor-negative breast cancer is reversed by histone deacetylase inhibitor. 16505096

    Recently, we have found dramatic overexpression of ecto-5'-nucleotidase (or CD73), a glycosylphosphatidylinositol-anchored component of lipid rafts, in estrogen receptor-negative [ER-] breast cancer cell lines and in clinical samples. To find out whether there is a more general shift in expression profile of membrane proteins, we undertook an investigation on the expression of selected membrane and cytoskeletal proteins in aggressive and metastatic breast cancer cells. Our analysis revealed a remarkably uniform shift in expression of a broad range of membrane, cytoskeletal, and signaling proteins in ER- cells. A similar change was found in two in vitro models of transition to ER- breast cancer: drug-resistant Adr2 and c-Jun-transformed clones of MCF-7 cells. Interestingly, similar expression pattern was observed in normal fibroblasts, suggesting the commonality of membrane determinants of invasive cancer cells with normal mesenchymal phenotype. Because a number of investigated proteins are components of lipid rafts, our results suggest that there is a major remodeling of lipid rafts and underlying cytoskeleton in ER- breast cancer. To test whether this broadly defined ER- phenotype could be reversed by treatment with differentiating agent, we treated ER- cells with trichostatin A, an inhibitor of histone deacetylase, and observed reversal of mesenchymal and reappearance of epithelial markers. Changes in gene and protein expression also included increased capacity to generate adenosine and altered expression profile of adenosine receptors. Thus, our results suggest that during transition to invasive breast cancer there is a significant structural reorganization of lipid rafts and underlying cytoskeleton that is reversed upon histone deacetylase inhibition.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • TAO1 kinase maintains chromosomal stability by facilitating proper congression of chromosomes. 24898139

    Chromosomal instability can arise from defects in chromosome-microtubule attachment. Using a variety of drug treatments, we show that TAO1 kinase is required for ensuring the normal congression of chromosomes. Depletion of TAO1 reduces the density of growing interphase and mitotic microtubules in human cells, showing TAO1's role in controlling microtubule dynamics. We demonstrate the aneugenic nature of chromosome-microtubule attachment defects in TAO1-depleted cells using an error-correction assay. Our model further strengthens the emerging paradigm that microtubule regulatory pathways are important for resolving erroneous kinetochore-microtubule attachments and maintaining the integrity of the genome, regardless of the spindle checkpoint status.
    Document Type:
    Reference
    Product Catalog Number:
    MABC292
    Product Catalog Name:
    Anti-TAOK1 Antibody (long isoform), clone TAO1_1.2_VMD
  • Activin A protects midbrain neurons in the 6-hydroxydopamine mouse model of Parkinson's disease. 25902062

    Parkinson's disease (PD) is a chronic neurodegenerative disease characterized by a significant loss of dopaminergic neurons within the substantia nigra pars compacta (SNpc) and a subsequent loss of dopamine (DA) within the striatum. Despite advances in the development of pharmacological therapies that are effective at alleviating the symptoms of PD, the search for therapeutic treatments that halt or slow the underlying nigral degeneration remains a particular challenge. Activin A, a member of the transforming growth factor β superfamily, has been shown to play a role in the neuroprotection of midbrain neurons against 6-hydroxydopamine (6-OHDA) in vitro, suggesting that activin A may offer similar neuroprotective effects in in vivo models of PD. Using robust stereological methods, we found that intrastriatal injections of 6-OHDA results in a significant loss of both TH positive and NeuN positive populations in the SNpc at 1, 2, and 3 weeks post-lesioning in drug naïve mice. Exogenous application of activin A for 7 days, beginning the day prior to 6-OHDA administration, resulted in a significant survival of both dopaminergic and total neuron numbers in the SNpc against 6-OHDA-induced toxicity. However, we found no corresponding protection of striatal DA or dopamine transporter (DAT) expression levels in animals receiving activin A compared to vehicle controls. These results provide the first evidence that activin A exerts potent neuroprotection in a mouse model of PD, however this neuroprotection may be localized to the midbrain.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Tau-mediated NMDA receptor impairment underlies dysfunction of a selectively vulnerable network in a mouse model of frontotemporal dementia. 25471585

    Frontotemporal dementia (FTD) is a neurodegenerative behavioral disorder that selectively affects the salience network, including the ventral striatum and insula. Tau mutations cause FTD, but how mutant tau impairs the salience network is unknown. Here, we address this question using a mouse model expressing the entire human tau gene with an FTD-associated mutation (V337M). Mutant, but not wild-type, human tau transgenic mice had aging-dependent repetitive and disinhibited behaviors, with synaptic deficits selectively in the ventral striatum and insula. There, mutant tau depleted PSD-95, resulting in smaller postsynaptic densities and impaired synaptic localization of NMDA receptors (NMDARs). In the ventral striatum, decreased NMDAR-mediated transmission reduced striatal neuron firing. Pharmacologically enhancing NMDAR function with the NMDAR co-agonist cycloserine reversed electrophysiological and behavioral deficits. These results indicate that NMDAR hypofunction critically contributes to FTD-associated behavioral and electrophysiological alterations and that this process can be therapeutically targeted by a Food and Drug Administration-approved drug.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Inhibition of doxorubicin-induced HER3-PI3K-AKT signalling enhances apoptosis of ovarian cancer cells. 22841590

    Resistance to chemotherapy is a serious problem for the successful treatment of ovarian cancer patients but signalling pathways that contribute to this chemoinsensitivity are largely unknown. We demonstrate that the chemotherapeutic drug doxorubicin induces activation of the HER3-PI3K-AKT signalling cascade in ovarian cancer cells. We further show that the induction of this anti-apoptotic signalling pathway is based on upregulated expression of HER3 ligands, their shedding by the metalloprotease ADAM17, and is dependent on the HER2 receptor. The doxorubicin-mediated activation of this important survival cascade can be blocked by the kinase inhibitors lapatinib or erlotinib as well as by the therapeutic monoclonal antibody trastuzumab. Inhibition of the doxorubicin-induced activation of HER3-PI3K-AKT signalling significantly increased apoptosis of ovarian cancer cells. Besides doxorubicin, treatment of cells with cisplatin resulted in activation of the HER3 receptor whereas other chemotherapeutics did not show this effect. The increase in HER3 phosphorylation was detected in well-established ovarian cancer cell lines which originate from patients previously treated with these chemotherapeutic drugs. Based on these results, we postulate that activation of the HER3-PI3K-AKT cascade represents a major mechanism of chemoresistance in ovarian cancer.
    Document Type:
    Reference
    Product Catalog Number:
    05-471
  • Cell adhesive peptide screening of the mouse laminin α1 chain G domain. 20727343

    Cell adhesive peptides have been widely applied for therapeutic drugs, drug delivery systems, and biomaterials. Previously, we identified various cell adhesive sequences in the G domains of four laminin α chains (α2-α5) by the systematic soluble peptide screening. We also identified five cell-binding sequences in the laminin α1 chain G domain using synthetic peptide-polystyrene beads. Here, we re-screened cell adhesive peptides in the laminin α1 chain G domain by the systematic soluble peptides screening. The 110 soluble peptides were evaluated for their cell adhesive activities using human fibrosarcoma HT1080 cells and human dermal fibroblasts. Fourteen peptides were newly identified as a cell adhesive. Additionally, four peptides (AG22: SSFHFDGSGYAM, AG42: TFDLLRNSYGVRK, AG76: HQNQMDYATLQLQ, AG86: LGGLPSHYRARNI) promoted integrin-mediated cell adhesion. Further, neurite outgrowth activity with rat pheochromocytoma PC12 cells was evaluated and two peptides (AG20: SIGLWNYIEREGK, AG26: SPNGLLFYLASNG) were newly identified for neurite outgrowth activity. These results suggested that the systematic soluble peptides screening approach is an accurate and powerful strategy for finding biologically active sequences. The active sequences newly identified here could be involved in the biological functions of this domain. The active peptides are useful for evaluating molecular mechanisms of laminin-receptor interactions and for developing cell adhesive biomaterials.
    Document Type:
    Reference
    Product Catalog Number:
    AG100
    Product Catalog Name:
    Human IgG Fc Control Protein, recombinant protein
  • Clozapine promotes glycolysis and myelin lipid synthesis in cultured oligodendrocytes. 25477781

    Clozapine displays stronger systemic metabolic side effects than haloperidol and it has been hypothesized that therapeutic antipsychotic and adverse metabolic effects of these drugs are related. Considering that cerebral disconnectivity through oligodendrocyte dysfunction has been implicated in schizophrenia, it is important to determine the effect of these drugs on oligodendrocyte energy metabolism and myelin lipid production. Effects of clozapine and haloperidol on glucose and myelin lipid metabolism were evaluated and compared in cultured OLN-93 oligodendrocytes. First, glycolytic activity was assessed by measurement of extra- and intracellular glucose and lactate levels. Next, the expression of glucose (GLUT) and monocarboxylate (MCT) transporters was determined after 6 and 24 h. And finally mitochondrial respiration, acetyl-CoA carboxylase, free fatty acids, and expression of the myelin lipid galactocerebroside were analyzed. Both drugs altered oligodendrocyte glucose metabolism, but in opposite directions. Clozapine improved the glucose uptake, production and release of lactate, without altering GLUT and MCT. In contrast, haloperidol led to higher extracellular levels of glucose and lower levels of lactate, suggesting reduced glycolysis. Antipsychotics did not alter significantly the number of functionally intact mitochondria, but clozapine enhanced the efficacy of oxidative phosphorylation and expression of galactocerebroside. Our findings support the superior impact of clozapine on white matter integrity in schizophrenia as previously observed, suggesting that this drug improves the energy supply and myelin lipid synthesis in oligodendrocytes. Characterizing the underlying signal transduction pathways may pave the way for novel oligodendrocyte-directed schizophrenia therapies.
    Document Type:
    Reference
    Product Catalog Number:
    MAB342
    Product Catalog Name:
    Anti-Galactocerebroside Antibody, clone mGalC