Millipore Sigma Vibrant Logo
 

bipolar


286 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Bipolar electrocautery: A rodent model of Sunderland third-degree nerve injury. 20083740

    OBJECTIVE: To determine the Sunderland classification of a bipolar electrocautery injury. METHODS: Twenty-two rats received crush (a reproducible Sunderland second-degree injury) or bipolar electrocautery injury and were evaluated for functional, histomorphometric, and immunohistochemical recovery at 21 or 42 days. Animal experiments were performed between July 3 and December 12, 2007. Axonal regeneration and end plate reinnervation were evaluated in double transgenic cyan fluorescent protein-conjugated Thy1 and green fluorescent protein-conjugated S100 mice. RESULTS: Compared with crush injury, bipolar electrocautery injury caused greater disruption of myelin and neurofilament architecture at the injury site and decreased nerve fiber counts and percentage of neural tissue distal to the injury (P =.007). Complete functional recovery was seen after crush but not bipolar electrocautery injury. Serial live imaging demonstrated axonal regeneration at week 1 after crush and at week 3 after bipolar electrocautery injury. Qualitative assessment of motor end plate reinnervation at 42 days demonstrated complete neuromuscular end plate reinnervation in the crush group and only limited reinnervation in the bipolar electrocautery group. CONCLUSION: Bipolar electrocautery injury in a rodent model resulted in a Sunderland third-degree injury, characterized by gradual, incomplete recovery without intervention.
    Document Type:
    Reference
    Product Catalog Number:
    AB980
  • Bipolar cells of the ground squirrel retina. 21246553

    Parallel processing of an image projected onto the retina starts at the first synapse, the cone pedicle, and each cone feeds its light signal into a minimum of eight different bipolar cell types. Hence, the morphological classification of bipolar cells is a prerequisite for analyzing retinal circuitry. Here we applied common bipolar cell markers to the cone-dominated ground squirrel retina, studied the labeling by confocal microscopy and electron microscopy, and compared the resulting bipolar cell types with those of the mouse (rod dominated) and primate retina. Eight different cone bipolar cell types (three OFF and five ON) and one rod bipolar cell were distinguished. The major criteria for classifying the cells were their immunocytochemical identity, their dendritic branching pattern, and the shape and stratification level of their axons in the inner plexiform layer (IPL). Immunostaining with antibodies against G?13, a marker for ON bipolar cells, made it possible to separate OFF and ON bipolars. Recoverin-positive OFF bipolar cells partly overlapped with ON bipolar axon terminals at the ON/OFF border of the IPL. Antibodies against HCN4 labeled the S-cone selective (bb) bipolar cell. The calcium-binding protein CaB5 was expressed in two OFF and two ON cone bipolar cell types, and CD15 labeled a widefield ON cone bipolar cell comparable to the DB6 in primate.
    Document Type:
    Reference
    Product Catalog Number:
    AB5585
  • OFF midget bipolar cells in the retina of the marmoset, Callithrix jacchus, express AMPA receptors. 17366611

    Recent studies suggested that different types of OFF bipolar cells express specific types of ionotropic (AMPA or kainate) glutamate receptors (GluRs) at their contacts with cone pedicles. However, the question of which GluR type is expressed by which type of OFF bipolar cell in primate retina is still open. In this study, the expression of AMPA and kainate receptor subunits at the dendritic tips of flat (OFF) midget bipolar (FMB) cells was analyzed in the retina of the common marmoset, Callithrix jacchus. We used preembedding electron microscopy and double immunofluorescence with subunit-specific antibodies. The FMB cells were labeled with antibodies against the carbohydrate epitope CD15. Cone pedicles were identified with peanut agglutinin. Immunoreactivity for the GluR1 subunit and for CD15 is preferentially located at triad-associated flat contacts. Furthermore, the large majority of GluR1 immunoreactive puncta is localized at the dendritic tips of FMB cells. These results suggest that FMB cells express the AMPA receptor subunit GluR1. In contrast, the kainate receptor subunit GluR5 is not colocalized with the dendritic tips of FMB cells or with the GluR1 subunit. Immunoreactive puncta for the GluR1 subunit are found at all M/L-cone pedicles but are only rarely associated with S-cone pedicles. This is consistent with our recent findings in marmoset retina that FMB cells do not contact S-cone pedicles. The presence of GluR5 clusters at S-cone pedicles indicates that in primate retinas OFF bipolar cells expressing kainate receptor subunits receive some S-cone input.
    Document Type:
    Reference
    Product Catalog Number:
    AB1504
    Product Catalog Name:
    Anti-Glutamate receptor 1 Antibody
  • Bipolar cell diversity in the primate retina: morphologic and immunocytochemical analysis of a new world monkey, the marmoset Callithrix jacchus. 11494253

    The aim of this study was to identify the bipolar cell types in the retina of a New World monkey, the common marmoset, and compare them with those found in the Old World macaque monkey. Retinal whole-mounts, sections, or both, were stained by using DiI labeling and immunohistochemical methods. Semithin sections were analyzed by using quantitative methods. We show that the same morphologic types of bipolar cell as described for the Old World macaque monkey by Boycott and Wässle (Boycott and Wässle [1991] Eur. J. Neurosci. 3:1069-1088) are present in marmoset retina: two types of midget bipolar cells, six type of diffuse bipolar cells, a blue cone bipolar cell, and one type of rod bipolar cell. The pattern of staining with different immunohistochemical markers (fingerprint) of each bipolar cell type in marmoset was also the same as described for macaque, with one exception: the flat midget bipolar cell (FMB) class is labeled by antibodies to recoverin in macaque but is labeled by antibodies to CD15 in marmoset. The labeled FMB cells in marmoset make contact with multiple cone photoreceptors throughout most of the extrafoveal retina. The spatial density of bipolar cells in marmoset is shown to be sufficient to support one-to-one connectivity of midget bipolar and ganglion cells in the fovea and to allow for parallel pathways to ganglion cells throughout the retina. Quantitative differences in the morphology and receptor connectivity between marmoset and macaque can be related to differences in cone and rod photoreceptor density between the species. We conclude that bipolar cell diversity is a preserved feature of the primate retina.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3073
    Product Catalog Name:
    Anti-G Protein Goα Antibody, clone 2A
  • Ectopic retinal ON bipolar cell synapses in the OFF inner plexiform layer: contacts with dopaminergic amacrine cells and melanopsin ganglion cells. 19731338

    A key principle of retinal organization is that distinct ON and OFF channels are relayed by separate populations of bipolar cells to different sublaminae of the inner plexiform layer (IPL). ON bipolar cell axons have been thought to synapse exclusively in the inner IPL (the ON sublamina) onto dendrites of ON-type amacrine and ganglion cells. However, M1 melanopsin-expressing ganglion cells and dopaminergic amacrine (DA) cells apparently violate this dogma. Both are driven by ON bipolar cells, but their dendrites stratify in the outermost IPL, within the OFF sublamina. Here, in the mouse retina, we show that some ON cone bipolar cells make ribbon synapses in the outermost OFF sublayer, where they costratify with and contact the dendrites of M1 and DA cells. Whole-cell recording and dye filling in retinal slices indicate that type 6 ON cone bipolars provide some of this ectopic ON channel input. Imaging studies in dissociated bipolar cells show that these ectopic ribbon synapses are capable of vesicular release. There is thus an accessory ON sublayer in the outer IPL.
    Document Type:
    Reference
    Product Catalog Number:
    AG208
    Product Catalog Name:
    Vesicular Glutamate Transporter 1, control peptide for AB5905
  • Formation of bipolar spindles with two centrosomes in tetraploid cells established from normal human fibroblasts. 22696268

    Tetraploid cells with unstable chromosomes frequently arise as an early step in tumorigenesis and lead to the formation of aneuploid cells. The mechanisms responsible for the chromosome instability of polyploid cells are not fully understood, although the supernumerary centrosomes in polyploid cells have been considered the major cause of chromosomal instability. The aim of this study was to examine the integrity of mitotic spindles and centrosomes in proliferative polyploid cells established from normal human fibroblasts. TIG-1 human fibroblasts were treated with demecolcine (DC) for 4
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Amacrine and bipolar inputs to midget and parasol ganglion cells in marmoset retina. 22564345

    Retinal ganglion cells receive excitatory synapses from bipolar cells and inhibitory synapses from amacrine cells. Previous studies in primate suggest that the strength of inhibitory amacrine input is greater to cells in peripheral retina than to foveal (central) cells. A comprehensive study of a large number of ganglion cells at different eccentricities, however, is still lacking. Here, we compared the amacrine and bipolar input to midget and parasol ganglion cells in central and peripheral retina of marmosets (Callithrix jacchus). Ganglion cells were labeled by retrograde filling from the lateral geniculate nucleus or by intracellular injection. Presumed amacrine input was identified with antibodies against gephyrin; presumed bipolar input was identified with antibodies against the GluR4 subunit of the AMPA receptor. In vertical sections, about 40% of gephyrin immunoreactive (IR) puncta were colocalized with GABAA receptor subunits, whereas immunoreactivity for gephyrin and GluR4 was found at distinct sets of puncta. The density of gephyrin IR puncta associated with ganglion cell dendrites was comparable for midget and parasol cells at all eccentricities studied (up to 2 mm or about 16 degrees of visual angle for midget cells and up to 10 mm or >80 degrees of visual angle for parasol cells). In central retina, the densities of gephyrin IR and GluR4 IR puncta associated with the dendrites of midget and parasol cells are comparable, but the average density of GluR4 IR puncta decreased slightly in peripheral parasol cells. These anatomical results indicate that the ratio of amacrine to bipolar input does not account for the distinct functional properties of parasol and midget cells or for functional differences between cells of the same type in central and peripheral retina.
    Document Type:
    Reference
    Product Catalog Number:
    AB1508
    Product Catalog Name:
    Anti-Glutamate Receptor 4 Antibody
  • Glutamate receptors at bipolar synapses in the inner plexiform layer of primate retina: light microscopic analysis. 14515245

    At least 10 different types of bipolar cells have been distinguished in the primate retina. The axon terminals of these cells stratify in distinct strata in the inner plexiform layer and are involved in parallel pathways to distinct types of ganglion cells. Ionotropic glutamate receptor (GluR) subunits also show a stratified distribution in the inner plexiform layer. Here, we investigated whether different types of bipolar cells are associated with different types of ionotropic glutamate receptors in the inner retina of a New World primate, the common marmoset Callithrix jacchus. Vertical cryostat sections through central retina were double labeled with immunohistochemical markers for bipolar cell types and with antibodies to alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor subunits GluR1 to 4, kainate receptor subunits GluR6/7, and the NR1C2' subunit of the N-methyl-D-aspartate (NMDA) receptor. The axon terminals of bipolar cell types were reconstructed from confocal sections, and the colocalized immunoreactive puncta were quantified. For all bipolar cell types, immunoreactive puncta for the AMPA receptor subunits GluR2, 2/3, and 4 were colocalized at highest densities, whereas GluR1-immunoreactive puncta were expressed at very low densities. The kainate receptor subunits GluR6/7 were predominantly associated with diffuse bipolar (DB6) and rod bipolar cells. The NMDA receptor subunit NR1C2' was specifically colocalized with flat midget and DB3 axons. These findings suggest that rod and cone bipolar cell types contribute to multiple but distinct glutamate receptor pathways in primate retina.
    Document Type:
    Reference
    Product Catalog Number:
    AB5050P
    Product Catalog Name:
    Anti-NMDAR1 Splice Variant C2 Antibody
  • Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina. 18282311

    Different types of retinal ganglion cell show differences in their response properties. Here we investigated the question of whether these differences are related to the distribution of the synaptic input to the dendritic tree. We measured the distribution and density of synaptic input to the dendrites of midget and parasol ganglion cells in the retina of a New World monkey, the marmoset, Callithrix jacchus. Ganglion cells were retrogradely labeled by dye injection into parvocellular or magnocellular regions of the lateral geniculate nucleus and subsequently photo-filled. Presumed bipolar cell synapses were identified immunocytochemically using antibodies against the ribbon protein CtBP2 or the GluR4 subunit of the AMPA receptor. For all cells, colocalized immunoreactive puncta were distributed across the entire dendritic tree. The density of the presumed bipolar input to midget ganglion cells was comparable for both synaptic markers, suggesting that the AMPA receptor GluR4 subunit is expressed at all synapses between midget bipolar and midget ganglion cells. Midget ganglion cells had an average of nine colocalized immunoreactive puncta per 100 microm2 dendritic surface, and parasol cells had an average of seven colocalized immunoreactive puncta per 100 microm2 dendritic surface. The densities were comparable in different regions of the dendritic tree and were not influenced by the location of the cells with respect to the fovea. Our findings suggest that the differences in the response characteristics of midget and parasol cells are not due to differences in the density of synaptic input to their dendritic tree.
    Document Type:
    Reference
    Product Catalog Number:
    AB1508
    Product Catalog Name:
    Anti-Glutamate Receptor 4 Antibody
  • Biocytin wide-field bipolar cells in rabbit retina selectively contact blue cones. 17990268

    The biocytin wide-field bipolar cell in rabbit retina has a broad axonal arbor in layer 5 of the inner plexiform layer and a wide dendritic arbor that does not contact all cones in its dendritic field. The purpose of our study was to identify the types of cones that this cell contacts. We identified the bipolar cells by selective uptake of biocytin, labeled the cones with peanut agglutinin, and then used antibodies against blue cone opsin and red-green cone opsin to identify the individual cone types. The biocytin-labeled cells selectively contacted cones whose outer segments stained for blue cone opsin and avoided cones that did not. We conclude that the biocytin wide-field bipolar cell is an ON blue cone bipolar cell in the rabbit retina and is homologous to the blue cone bipolar cells that have been previously described in primate, mouse, and ground squirrel retinas.
    Document Type:
    Reference
    Product Catalog Number:
    AB5405
    Product Catalog Name:
    Anti-Opsin Antibody, Red/Green