Saltar al contenido
Merck

244651

Tin(IV) oxide

greener alternative

−325 mesh, 99.9% trace metals basis

Sinónimos:

Stannic dioxide, Tin dioxide, Stannic oxide

Iniciar sesión para ver los precios por organización y contrato.

Seleccione un Tamaño


Acerca de este artículo

Fórmula lineal:
SnO2
Número CAS:
Peso molecular:
150.71
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352303
EC Number:
242-159-0
MDL number:
Servicio técnico
¿Necesita ayuda? Nuestro equipo de científicos experimentados está aquí para ayudarle.
Permítanos ayudarle
Servicio técnico
¿Necesita ayuda? Nuestro equipo de científicos experimentados está aquí para ayudarle.
Permítanos ayudarle

Nombre del producto

Tin(IV) oxide, −325 mesh, 99.9% trace metals basis

InChI key

XOLBLPGZBRYERU-UHFFFAOYSA-N

InChI

1S/2O.Sn

SMILES string

O=[Sn]=O

assay

99.9% trace metals basis

form

powder

greener alternative product characteristics

Design for Energy Efficiency
Learn more about the Principles of Green Chemistry.

sustainability

Greener Alternative Product

particle size

−325 mesh

density

6.95 g/mL at 25 °C (lit.)

application(s)

battery manufacturing

greener alternative category

Quality Level

¿Está buscando productos similares? Visita Guía de comparación de productos

Application

Tin(IV) oxide has been used to prepare thin films of TiO2-doped SnO2 oxide nanocomposites.

It can be used as astarting material to prepare niobium and zinc-doped titanium-tin-oxidesolid-solution ceramics, which are applicable in the field of electronicdevices.

General description

Tin(IV) oxide (SnO2) is an n-type wide band gap semiconductor with high transmittance at nearIR and visible region. It is scratch resistant and chemically inert.
We are committed to bringing you Greener Alternative Products, which belong to one of the four categories of greener alternatives. Tin oxide enhances lithium-ion batteries with high energy density, improved cycling stability, and efficient charge/discharge rates, supporting more sustainable energy storage. Click here for more information.

wgk

nwg

Clase de almacenamiento

11 - Combustible Solids

flash_point_f

Not applicable

flash_point_c

Not applicable

ppe

Eyeshields, Gloves, type N95 (US)


Elija entre una de las versiones más recientes:

Certificados de análisis (COA)

Lot/Batch Number

¿No ve la versión correcta?

Si necesita una versión concreta, puede buscar un certificado específico por el número de lote.

¿Ya tiene este producto?

Encuentre la documentación para los productos que ha comprado recientemente en la Biblioteca de documentos.

Visite la Librería de documentos

Lina Gao et al.
Langmuir : the ACS journal of surfaces and colloids, 29(3), 957-964 (2012-12-25)
As advanced electrodes for direct alcohol fuel cells, graphene-Pd and graphene-Pt composites with a trace of SnO(2) have been successfully synthesized by a modified electroless plating technique. The surface of graphene oxide is first sensitized by Sn(2+) ions, and subsequently
Junfei Liang et al.
ACS applied materials & interfaces, 4(11), 5742-5748 (2012-10-24)
A flexible free-standing graphene/SnO₂ nanocomposites paper (GSP) was prepared by coupling a simple filtration method and a thermal reduction together for the first time. Compared with the pure SnO₂ nanoparticles, the GSP exhibited a better cycling stability, because the graphene
Linlin Li et al.
Nanoscale, 5(1), 134-138 (2012-11-14)
Novel eggroll-like CaSnO(3) nanotubes have been prepared by a single spinneret electrospinning method followed by calcination in air for the first time. The electrospun sample as a lithium-ion battery electrode material exhibited improved cycling stability and rate capability by virtue
Yinzhu Jiang et al.
ACS applied materials & interfaces, 4(11), 6216-6220 (2012-10-31)
Porous SnO₂/graphene composite thin films are prepared as anodes for lithium ion batteries by the electrostatic spray deposition technique. Reticular-structured SnO₂ is formed on both the nickel foam substrate and the surface of graphene sheets according to the scanning electron
Ilsun Yoon et al.
Nanoscale, 5(2), 552-555 (2012-12-13)
Here we demonstrate a facile method of quantifying the decaying optical field surrounding free-standing tin dioxide (SnO(2)) nanofiber waveguides. Through the use of thin self-assembled polyelectrolyte coatings and fluorescent optical transmitters we map out the optical intensity as a function

Nuestro equipo de científicos tiene experiencia en todas las áreas de investigación: Ciencias de la vida, Ciencia de los materiales, Síntesis química, Cromatografía, Analítica y muchas otras.

Póngase en contacto con el Servicio técnico