Non-viral generation of marmoset monkey iPS cells by a six-factor-in-one-vector approach. Debowski, K; Warthemann, R; Lentes, J; Salinas-Riester, G; Dressel, R; Langenstroth, D; Gromoll, J; Sasaki, E; Behr, R PloS one
10
e0118424
2015
Abstract anzeigen
Groundbreaking studies showed that differentiated somatic cells of mouse and human origin could be reverted to a stable pluripotent state by the ectopic expression of only four proteins. The resulting pluripotent cells, called induced pluripotent stem (iPS) cells, could be an alternative to embryonic stem cells, which are under continuous ethical debate. Hence, iPS cell-derived functional cells such as neurons may become the key for an effective treatment of currently incurable degenerative diseases. However, besides the requirement of efficacy testing of the therapy also its long-term safety needs to be carefully evaluated in settings mirroring the clinical situation in an optimal way. In this context, we chose the long-lived common marmoset monkey (Callithrix jacchus) as a non-human primate species to generate iPS cells. The marmoset monkey is frequently used in biomedical research and is gaining more and more preclinical relevance due to the increasing number of disease models. Here, we describe, to our knowledge, the first-time generation of marmoset monkey iPS cells from postnatal skin fibroblasts by non-viral means. We used the transposon-based, fully reversible piggyback system. We cloned the marmoset monkey reprogramming factors and established robust and reproducible reprogramming protocols with a six-factor-in-one-construct approach. We generated six individual iPS cell lines and characterized them in comparison with marmoset monkey embryonic stem cells. The generated iPS cells are morphologically indistinguishable from marmoset ES cells. The iPS cells are fully reprogrammed as demonstrated by differentiation assays, pluripotency marker expression and transcriptome analysis. They are stable for numerous passages (more than 80) and exhibit euploidy. In summary, we have established efficient non-viral reprogramming protocols for the derivation of stable marmoset monkey iPS cells, which can be used to develop and test cell replacement therapies in preclinical settings. | Immunofluorescence | | 25785453
 |
Repression of Igf1 expression by Ezh2 prevents basal cell differentiation in the developing lung. Galvis, LA; Holik, AZ; Short, KM; Pasquet, J; Lun, AT; Blewitt, ME; Smyth, IM; Ritchie, ME; Asselin-Labat, ML Development (Cambridge, England)
142
1458-69
2015
Abstract anzeigen
Epigenetic mechanisms involved in the establishment of lung epithelial cell lineage identities during development are largely unknown. Here, we explored the role of the histone methyltransferase Ezh2 during lung lineage determination. Loss of Ezh2 in the lung epithelium leads to defective lung formation and perinatal mortality. We show that Ezh2 is crucial for airway lineage specification and alveolarization. Using optical projection tomography imaging, we found that branching morphogenesis is affected in Ezh2 conditional knockout mice and the remaining bronchioles are abnormal, lacking terminally differentiated secretory club cells. Remarkably, RNA-seq analysis revealed the upregulation of basal genes in Ezh2-deficient epithelium. Three-dimensional imaging for keratin 5 further showed the unexpected presence of a layer of basal cells from the proximal airways to the distal bronchioles in E16.5 embryos. ChIP-seq analysis indicated the presence of Ezh2-mediated repressive marks on the genomic loci of some but not all basal genes, suggesting an indirect mechanism of action of Ezh2. We found that loss of Ezh2 de-represses insulin-like growth factor 1 (Igf1) expression and that modulation of IGF1 signaling ex vivo in wild-type lungs could induce basal cell differentiation. Altogether, our work reveals an unexpected role for Ezh2 in controlling basal cell fate determination in the embryonic lung endoderm, mediated in part by repression of Igf1 expression. | | | 25790853
 |
Sox9 is critical for suppression of neurogenesis but not initiation of gliogenesis in the cerebellum. Vong, KI; Leung, CK; Behringer, RR; Kwan, KM Molecular brain
8
25
2015
Abstract anzeigen
The high mobility group (HMG) family transcription factor Sox9 is critical for induction and maintenance of neural stem cell pool in the central nervous system (CNS). In the spinal cord and retina, Sox9 is also the master regulator that defines glial fate choice by mediating the neurogenic-to-gliogenic fate switch. On the other hand, the genetic repertoire governing the maintenance and fate decision of neural progenitor pool in the cerebellum has remained elusive.By employing the Cre/loxP strategy, we specifically inactivated Sox9 in the mouse cerebellum. Unexpectedly, the self-renewal capacity and multipotency of neural progenitors at the cerebellar ventricular zone (VZ) were not perturbed upon Sox9 ablation. Instead, the mutants exhibited an increased number of VZ-derived neurons including Purkinje cells and GABAergic interneurons. Simultaneously, we observed continuous neurogenesis from Sox9-null VZ at late gestation, when normally neurogenesis ceases to occur and gives way for gliogenesis. Surprisingly, glial cell specification was not affected upon Sox9 ablation.Our findings suggest Sox9 may mediate the neurogenic-to-gliogenic fate switch in mouse cerebellum by modulating the termination of neurogenesis, and therefore indicate a functional discrepancy of Sox9 between the development of cerebellum and other major neural tissues. | | | 25888505
 |
Tumor necrosis factor-inducible gene 6 promotes liver regeneration in mice with acute liver injury. Wang, S; Lee, JS; Hyun, J; Kim, J; Kim, SU; Cha, HJ; Jung, Y Stem cell research & therapy
6
20
2015
Abstract anzeigen
Tumor necrosis factor-inducible gene 6 protein (TSG-6), one of the cytokines released by human mesenchymal stem/stromal cells (hMSC), has an anti-inflammatory effect and alleviates several pathological conditions; however, the hepatoprotective potential of TSG-6 remains unclear. We investigated whether TSG-6 promoted liver regeneration in acute liver failure.The immortalized hMSC (B10) constitutively over-expressing TSG-6 or empty plasmid (NC: Negative Control) were established, and either TSG-6 or NC-conditioned medium (CM) was intraperitoneally injected into mice with acute liver damage caused by CCl4. Mice were sacrificed at 3 days post-CM treatment.Higher expression and the immunosuppressive activity of TSG-6 were observed in CM from TSG-6-hMSC. The obvious histomorphological liver injury and increased level of liver enzymes were shown in CCl4-treated mice with or without NC-CM, whereas those observations were markedly ameliorated in TSG-6-CM-treated mice with CCl4. Ki67-positive hepatocytic cells were accumulated in the liver of the CCl4+TSG-6 group. RNA analysis showed the decrease in both of inflammation markers, tnfα, il-1β, cxcl1 and cxcl2, and fibrotic markers, tgf-β1, α-sma and collagen α1, in the CCl4+TSG-6 group, compared to the CCl4 or the CCl4+NC group. Protein analysis confirmed the lower expression of TGF-β1 and α-SMA in the CCl4+TSG-6 than the CCl4 or the CCl4+NC group. Immunostaining for α-SMA also revealed the accumulation of the activated hepatic stellate cells in the livers of mice in the CCl4 and CCl4+NC groups, but not in the livers of mice from the CCl4+TSG-6 group. The cultured LX2 cells, human hepatic stellate cell line, in TSG-6-CM showed the reduced expression of fibrotic markers, tgf-β1, vimentin and collagen α1, whereas the addition of the TSG-6 antibody neutralized the inhibitory effect of TSG-6 on the activation of LX2 cells. In addition, cytoplasmic lipid drops, the marker of inactivated hepatic stellate cell, were detected in TSG-6-CM-cultured LX2 cells, only. The suppressed TSG-6 activity by TSG-6 antibody attenuated the restoration process in livers of TSG-6-CM-treated mice with CCl4.These results demonstrated that TSG-6 contributed to the liver regeneration by suppressing the activation of hepatic stellate cells in CCl4-treated mice, suggesting the therapeutic potential of TSG-6 for acute liver failure. | | | 25890163
 |
Characterization of the neural stem cell gene regulatory network identifies OLIG2 as a multifunctional regulator of self-renewal. Mateo, JL; van den Berg, DL; Haeussler, M; Drechsel, D; Gaber, ZB; Castro, DS; Robson, P; Crawford, GE; Flicek, P; Ettwiller, L; Wittbrodt, J; Guillemot, F; Martynoga, B Genome research
25
41-56
2015
Abstract anzeigen
The gene regulatory network (GRN) that supports neural stem cell (NS cell) self-renewal has so far been poorly characterized. Knowledge of the central transcription factors (TFs), the noncoding gene regulatory regions that they bind to, and the genes whose expression they modulate will be crucial in unlocking the full therapeutic potential of these cells. Here, we use DNase-seq in combination with analysis of histone modifications to identify multiple classes of epigenetically and functionally distinct cis-regulatory elements (CREs). Through motif analysis and ChIP-seq, we identify several of the crucial TF regulators of NS cells. At the core of the network are TFs of the basic helix-loop-helix (bHLH), nuclear factor I (NFI), SOX, and FOX families, with CREs often densely bound by several of these different TFs. We use machine learning to highlight several crucial regulatory features of the network that underpin NS cell self-renewal and multipotency. We validate our predictions by functional analysis of the bHLH TF OLIG2. This TF makes an important contribution to NS cell self-renewal by concurrently activating pro-proliferation genes and preventing the untimely activation of genes promoting neuronal differentiation and stem cell quiescence. | | | 25294244
 |
Tfap2a and 2b act downstream of Ptf1a to promote amacrine cell differentiation during retinogenesis. Jin, K; Jiang, H; Xiao, D; Zou, M; Zhu, J; Xiang, M Molecular brain
8
28
2015
Abstract anzeigen
Retinogenesis is a precisely controlled developmental process during which different types of neurons and glial cells are generated under the influence of intrinsic and extrinsic factors. Three transcription factors, Foxn4, RORβ1 and their downstream effector Ptf1a, have been shown to be indispensable intrinsic regulators for the differentiation of amacrine and horizontal cells. At present, however, it is unclear how Ptf1a specifies these two cell fates from competent retinal precursors. Here, through combined bioinformatic, molecular and genetic approaches in mouse retinas, we identify the Tfap2a and Tfap2b transcription factors as two major downstream effectors of Ptf1a. RNA-seq and immunolabeling analyses show that the expression of Tfap2a and 2b transcripts and proteins is dramatically downregulated in the Ptf1a null mutant retina. Their overexpression is capable of promoting the differentiation of glycinergic and GABAergic amacrine cells at the expense of photoreceptors much as misexpressed Ptf1a is, whereas their simultaneous knockdown has the opposite effect. Given the demonstrated requirement for Tfap2a and 2b in horizontal cell differentiation, our study thus defines a Foxn4/RORβ1-Ptf1a-Tfap2a/2b transcriptional regulatory cascade that underlies the competence, specification and differentiation of amacrine and horizontal cells during retinal development. | | | 25966682
 |
The acinar differentiation determinant PTF1A inhibits initiation of pancreatic ductal adenocarcinoma. Krah, NM; De La O, JP; Swift, GH; Hoang, CQ; Willet, SG; Chen Pan, F; Cash, GM; Bronner, MP; Wright, CV; MacDonald, RJ; Murtaugh, LC eLife
4
2015
Abstract anzeigen
Understanding the initiation and progression of pancreatic ductal adenocarcinoma (PDAC) may provide therapeutic strategies for this deadly disease. Recently, we and others made the surprising finding that PDAC and its preinvasive precursors, pancreatic intraepithelial neoplasia (PanIN), arise via reprogramming of mature acinar cells. We therefore hypothesized that the master regulator of acinar differentiation, PTF1A, could play a central role in suppressing PDAC initiation. In this study, we demonstrate that PTF1A expression is lost in both mouse and human PanINs, and that this downregulation is functionally imperative in mice for acinar reprogramming by oncogenic KRAS. Loss of Ptf1a alone is sufficient to induce acinar-to-ductal metaplasia, potentiate inflammation, and induce a KRAS-permissive, PDAC-like gene expression profile. As a result, Ptf1a-deficient acinar cells are dramatically sensitized to KRAS transformation, and reduced Ptf1a greatly accelerates development of invasive PDAC. Together, these data indicate that cell differentiation regulators constitute a new tumor suppressive mechanism in the pancreas. | | | 26151762
 |
Aberrant epithelial GREM1 expression initiates colonic tumorigenesis from cells outside the stem cell niche. Davis, H; Irshad, S; Bansal, M; Rafferty, H; Boitsova, T; Bardella, C; Jaeger, E; Lewis, A; Freeman-Mills, L; Giner, FC; Rodenas-Cuadrado, P; Mallappa, S; Clark, S; Thomas, H; Jeffery, R; Poulsom, R; Rodriguez-Justo, M; Novelli, M; Chetty, R; Silver, A; Sansom, OJ; Greten, FR; Wang, LM; East, JE; Tomlinson, I; Leedham, SJ Nature medicine
21
62-70
2015
Abstract anzeigen
Hereditary mixed polyposis syndrome (HMPS) is characterized by the development of mixed-morphology colorectal tumors and is caused by a 40-kb genetic duplication that results in aberrant epithelial expression of the gene encoding mesenchymal bone morphogenetic protein antagonist, GREM1. Here we use HMPS tissue and a mouse model of the disease to show that epithelial GREM1 disrupts homeostatic intestinal morphogen gradients, altering cell fate that is normally determined by position along the vertical epithelial axis. This promotes the persistence and/or reacquisition of stem cell properties in Lgr5-negative progenitor cells that have exited the stem cell niche. These cells form ectopic crypts, proliferate, accumulate somatic mutations and can initiate intestinal neoplasia, indicating that the crypt base stem cell is not the sole cell of origin of colorectal cancer. Furthermore, we show that epithelial expression of GREM1 also occurs in traditional serrated adenomas, sporadic premalignant lesions with a hitherto unknown pathogenesis, and these lesions can be considered the sporadic equivalents of HMPS polyps. | | | 25419707
 |
SOX9 was involved in TKIs resistance in renal cell carcinoma via Raf/MEK/ERK signaling pathway. Li, XL; Chen, XQ; Zhang, MN; Chen, N; Nie, L; Xu, M; Gong, J; Shen, PF; Su, ZZ; Weng, X; Tan, JY; Zhao, T; Zeng, H; Zhou, Q International journal of clinical and experimental pathology
8
3871-81
2015
Abstract anzeigen
Renal cell carcinoma (RCC) is common genitourinary malignancy in human, 30-40% of patients with RCC would be diagnosed with metastatic RCC (mRCC). Even in the era of targeted therapy, patients with mRCC would inevitably progress due to drug resistance. Herein, exploration of the mechanisms of resistance is noteworthy to study. In the present study, we firstly reported the expression profile of SOX9 in renal carcinoma cells and tissues, and found that its expression was significantly associated with Fuhrman grading. Dual luciferase analysis confirmed that Raf/MEK/ERK pathway could directly be regulated by SOX9, and sequential experiments demonstrated that, renal carcinoma cells could sensitize to Sorafenib/Sunitinib through Raf/MEK/ERK signaling pathway inhibition regulated by SOX9 down-regulation. In a small cases with mRCC treated with Sorafenib/Sunitinib (n=38), comparative analysis showed that patients with SOX9 (-) had much better therapeutic response to TKIs than those with SOX9 (+) (PD: 9.1% vs. 56.2%, P=0.002, DCR: 90.9% vs. 43.8%, P=0.002). Based on these findings, we concluded that, SOX9 was firstly described to be highly expressed in renal cell carcinoma, and its expression was involved in TKIs drug resistance through activation of Raf/MEK/ERK pathway. In vitro, patients with SOX9 (-) was related to better response to TKIs treatment than those with SOX9 (+). SOX9 could be expected to be a promising biomarker predicting TKIs response and even expected to be another novel target in the treatment of mRCC. | | | 26097571
 |
Lymphangioleiomyomatosis Biomarkers Linked to Lung Metastatic Potential and Cell Stemness. Ruiz de Garibay, G; Herranz, C; Llorente, A; Boni, J; Serra-Musach, J; Mateo, F; Aguilar, H; Gómez-Baldó, L; Petit, A; Vidal, A; Climent, F; Hernández-Losa, J; Cordero, Á; González-Suárez, E; Sánchez-Mut, JV; Esteller, M; Llatjós, R; Varela, M; López, JI; García, N; Extremera, AI; Gumà, A; Ortega, R; Plà, MJ; Fernández, A; Pernas, S; Falo, C; Morilla, I; Campos, M; Gil, M; Román, A; Molina-Molina, M; Ussetti, P; Laporta, R; Valenzuela, C; Ancochea, J; Xaubet, A; Casanova, Á; Pujana, MA PloS one
10
e0132546
2015
Abstract anzeigen
Lymphangioleiomyomatosis (LAM) is a rare lung-metastasizing neoplasm caused by the proliferation of smooth muscle-like cells that commonly carry loss-of-function mutations in either the tuberous sclerosis complex 1 or 2 (TSC1 or TSC2) genes. While allosteric inhibition of the mechanistic target of rapamycin (mTOR) has shown substantial clinical benefit, complementary therapies are required to improve response and/or to treat specific patients. However, there is a lack of LAM biomarkers that could potentially be used to monitor the disease and to develop other targeted therapies. We hypothesized that the mediators of cancer metastasis to lung, particularly in breast cancer, also play a relevant role in LAM. Analyses across independent breast cancer datasets revealed associations between low TSC1/2 expression, altered mTOR complex 1 (mTORC1) pathway signaling, and metastasis to lung. Subsequently, immunohistochemical analyses of 23 LAM lesions revealed positivity in all cases for the lung metastasis mediators fascin 1 (FSCN1) and inhibitor of DNA binding 1 (ID1). Moreover, assessment of breast cancer stem or luminal progenitor cell biomarkers showed positivity in most LAM tissue for the aldehyde dehydrogenase 1 (ALDH1), integrin-ß3 (ITGB3/CD61), and/or the sex-determining region Y-box 9 (SOX9) proteins. The immunohistochemical analyses also provided evidence of heterogeneity between and within LAM cases. The analysis of Tsc2-deficient cells revealed relative over-expression of FSCN1 and ID1; however, Tsc2-deficient cells did not show higher sensitivity to ID1-based cancer inhibitors. Collectively, the results of this study reveal novel LAM biomarkers linked to breast cancer metastasis to lung and to cell stemness, which in turn might guide the assessment of additional or complementary therapeutic opportunities for LAM. | | | 26167915
 |