Millipore Sigma Vibrant Logo
 

CTC


358 Results Erweiterte Suche  
Suchergebnisse

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (172)
  • (160)
  • (1)
  • (1)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Aberrant methylation-mediated silencing of lncRNA CTC-276P9.1 is associated with malignant progression of esophageal squamous cell carcinoma. 29524086

    Downregulation and aberrant hypermethylation of long non-coding RNA CTC-276P9.1 have been detected in limited tumors. However, the distribution of methylated CpG sites and biological role of CTC-276P9.1 in esophageal squamous cell carcinoma (ESCC) progression and prognosis have not been fully clarified. The present study was to investigate the expression status and the distribution of methylated CpG sites within the three CpG islands of CTC-276P9.1, further to clarify its functional role and prognostic value in ESCC development and prognosis. Significant downregulation of CTC-276P9.1 was detected in esophageal cancer cells and ESCC tissues, and the expression of CTC-276P9.1 in ESCC tissues was associated with TNM stage, pathological differentiation, lymph node metastasis, and distant metastasis or recurrence. The expression level of CTC-276P9.1 in esophageal cancer cells was significantly reversed by treatment with 5-Aza-dC and TSA. The aberrant hypermethylation of the regions around the transcription start site was more tumor specific and associated with the expression levels of CTC-276P9.1. Moreover, histone modification may also participate in the regulation of CTC-276P9.1. Furthermore, over-expression of CTC-276P9.1 inhibited esophageal cancer cells proliferation and invasion in vitro, decreased the expression of proliferative markers and inhibited esophageal cancer cells invasion probably by regulating EMT. In addition, the dysregulation and hypermethylation of the regions around the transcription start site of CTC-276P9.1 were associated with poorer ESCC patients' survival. These findings suggest that CTC-276P9.1 may act as a tumor suppressor and may be employed as a new prognostic factor and therapeutic target for ESCC.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    17-10086
    Produktbezeichnung:
    EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit
  • Chemical stability of chlortetracycline and chlortetracycline degradation products and epimers in soil interstitial water 15519396

    Tetracyclines and tetracycline degradation products and epimers end up in the environment. In order to predict the persistence of the potential dominating species of the chlortetracyclines in the environment, the chemical stability of chlortetracycline (CTC) and four major CTC degradation products and epimers (iso-CTC, 4-epi-CTC, anhydro-CTC, and 4-epi-anhydro-CTC) was studied in milliQ water and soil interstitial water (SIW) under environmentally relevant conditions (oxygen, light, pH (3–9), and temperature (6 °C and 20 °C)). The chemical stability of the compounds was evaluated by following the decrease in amount of parent compound over time. In order to compare the results obtained under the varying conditions, apparent pseudo-first-order rate constants (kobs) for the disappearance of the parent compound and corresponding apparent half-lives were calculated. A statistical evaluation of the data showed that the chemical stability of the chlortetracyclines was generally dependent on photolysis, temperature, and matrix. The presence or absence of oxygen did not influence on the chemical stability. The presence of calcium and magnesium ions in SIW is believed to account for the significant differences in half-lives between milliQ water and SIW, although numerous of other factors are believed to influence as well. Generally, the five compounds were more persistent at pH 3–4 than at pH above 5.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
  • Viable circulating tumour cell detection using multiplex RNA in situ hybridisation predicts progression-free survival in metastatic breast cancer patients. 22538972

    Current approaches for detecting circulating tumour cells (CTCs) in blood are dependent on CTC enrichment and are based either on surface epithelial markers on CTCs or on cell size differences. The objectives of this study were to develop and characterise an ultrasensitive multiplex fluorescent RNA in situ hybridisation (ISH)-based CTC detection system called CTCscope. This method detects a multitude of tumour-specific markers at single-cell level in blood.Healthy blood samples spiked with tumour cell lines were used as a model system for the development and initial characterisation of CTCscope. To demonstrate the feasibility of CTC detection in patient blood, duplicate blood samples were drawn from 45 metastatic breast cancer patients for analysis by CTCscope and the CellSearch system. The association of CTCs with the tumour marker CA15-3 and progression-free survival (PFS) were assessed.CTCscope detected CTC transcripts of eight epithelial markers and three epithelial-mesenchymal-transition (EMT) markers for increased sensitivity. CTCscope was used to detect CTCs with minimal enrichment, and did not detect apoptotic or dead cells. In patient blood samples, CTCs detected by CellSearch, but not CTCscope, were positively correlated with CA15-3 levels. Circulating tumour cells detected by either CTCscope or CellSearch predicted PFS (CTCscope, HR (hazard ratio) 2.26, 95% CI 1.18-4.35, P=0.014; CellSearch, HR 2.50, 95% CI 1.27-4.90, P=0.008).CTCscope offers unique advantages over existing CTC detection approaches. By enumerating and characterising only viable CTCs, CTCscope provides additional prognostic and predictive information in therapy monitoring.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    12-506
    Produktbezeichnung:
    Goat Anti-Mouse IgG (H+L) Antibody, FITC conjugate
  • Heterogeneity of estrogen receptor expression in circulating tumor cells from metastatic breast cancer patients. 24058649

    Endocrine treatment is the most preferable systemic treatment in metastatic breast cancer patients that have had an estrogen receptor (ER) positive primary tumor or metastatic lesions, however, approximately 20% of these patients do not benefit from the therapy and demonstrate further metastatic progress. One reason for failure of endocrine therapy might be the heterogeneity of ER expression in tumor cells spreading from the primary tumor to distant sites which is reflected in detectable circulating tumor cells (CTCs).A sensitive and specific staining protocol for ER, keratin 8/18/19, CD45 was established. Peripheral blood from 35 metastatic breast cancer patients with ER-positive primary tumors was tested for the presence of CTCs. Keratin 8/18/19 and DAPI positive but CD45 negative cells were classified as CTCs and evaluated for ER staining. Subsequently, eight individual CTCs from four index patients (2 CTCs per patient) were isolated and underwent whole genome amplification and ESR1 gene mutation analysis.CTCs were detected in blood of 16 from 35 analyzed patients (46%), with a median of 3 CTCs/7.5 ml. In total, ER-negative CTCs were detected in 11/16 (69%) of the CTC positive cases, including blood samples with only ER-negative CTCs (19%) and samples with both ER-positive and ER-negative CTCs (50%). No correlation was found between the intensity and/or percentage of ER staining in the primary tumor with the number and ER status of CTCs of the same patient. ESR1 gene mutations were not found.CTCs frequently lack ER expression in metastatic breast cancer patients with ER-positive primary tumors and show a considerable intra-patient heterogeneity, which may reflect a mechanism to escape endocrine therapy. Provided single cell analysis did not support a role of ESR1 mutations in this process.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    12-371
    Produktbezeichnung:
    Normal Mouse IgG
  • Changes in keratin expression during metastatic progression of breast cancer: impact on the detection of circulating tumor cells. 22228641

    Circulating tumor cells (CTC) might function as early markers for breast cancer metastasis or monitoring therapy efficacy. Enrichment and identification of CTCs are based on epithelial markers that might be modulated during epithelial-mesenchymal transition. Little is known about the expression of keratins in CTCs and whether all CTCs can be detected with antibodies directed against a limited panel of keratins.Protein expression of keratin 2, 4-10, 13-16, 18, and 19 were assessed by a cocktail of antibodies (C11, AE1, AE3, and K7) and keratin antibodies C11 and A45-B/B3 alone in 11 breast cancer cell lines and 50 primary breast carcinomas and their lymph node metastases. Furthermore, CTCs were assessed in blood of 70 metastatic breast cancer patients.Claudin-low cell lines did not show expression of normal breast epithelial keratins but were positive for K14 and K16, detected by the cocktail only. Primary breast carcinomas showed changes in keratin expression during metastatic progression to the lymph nodes. In 35 of 70 patients CTCs were identified, of which 83%, 40%, and 57% were identified by the cocktail, C11 and A45-B/B3, respectively. Identification of CTCs by the cocktail was associated with shorter survival (P less than 0.01). In silico analyses revealed association between KRT16 expression and shorter relapse-free survival in metastatic breast cancer.Breast cancer cells show a complex pattern of keratin expression with potential biologic relevance. Individual keratin antibodies recognizing only a limited set of keratins inherit the risk to miss biologically relevant CTCs in cancer patients, and antibody cocktails including these keratins are therefore recommended.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • CTCF mediates the cell-type specific spatial organization of the Kcnq5 locus and the local gene regulation. 22347474

    Chromatin loops play important roles in the dynamic spatial organization of genes in the nucleus. Growing evidence has revealed that the multivalent functional zinc finger protein CCCTC-binding factor (CTCF) is a master regulator of genome spatial organization, and mediates the ubiquitous chromatin loops within the genome. Using circular chromosome conformation capture (4C) methodology, we discovered that CTCF may be a master organizer in mediating the spatial organization of the kcnq5 gene locus. We characterized the cell-type specific spatial organization of the kcnq5 gene locus mediated by CTCF in detail using chromosome conformation capture (3C) and 3C-derived techniques. Cohesion also participated in mediating the organization of this locus. RNAi-mediated knockdown of CTCF sharply diminished the interaction frequencies between the chromatin loops of the kcnq5 gene locus and down-regulated local gene expression. Functional analysis showed that the interacting chromatin loops of the kcnq5 gene locus can repress the gene expression in a luciferase reporter assay. These interacting chromatin fragments were a series of repressing elements whose contacts were mediated by CTCF. Therefore, these findings suggested that the dynamical spatial organization of the kcnq5 locus regulates local gene expression.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-729
    Produktbezeichnung:
    Anti-CTCF Antibody
  • CTCF promotes muscle differentiation by modulating the activity of myogenic regulatory factors. 21288905

    CTCF nuclear factor regulates many aspects of gene expression, largely as a transcriptional repressor or via insulator function. Its roles in cellular differentiation are not clear. Here we show an unexpected role for CTCF in myogenesis. Ctcf is expressed in myogenic structures during mouse and zebrafish development. Gain- and loss-of-function approaches in C2C12 cells revealed CTCF as a modulator of myogenesis by regulating muscle-specific gene expression. We addressed the functional connection between CTCF and myogenic regulatory factors (MRFs). CTCF enhances the myogenic potential of MyoD and myogenin and establishes direct interactions with MyoD, indicating that CTCF regulates MRF-mediated muscle differentiation. Indeed, CTCF modulates functional interactions between MyoD and myogenin in co-activation of muscle-specific gene expression and facilitates MyoD recruitment to a muscle-specific promoter. Finally, ctcf loss-of-function experiments in zebrafish embryos revealed a critical role of CTCF in myogenic development and linked CTCF to broader aspects of development via regulation of Wnt signaling. We conclude that CTCF modulates MRF functional interactions in the orchestration of myogenesis.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    17-371
    Produktbezeichnung:
    EZ-ChIP™
  • CTCF-mediated functional chromatin interactome in pluripotent cells. 21685913

    Mammalian genomes are viewed as functional organizations that orchestrate spatial and temporal gene regulation. CTCF, the most characterized insulator-binding protein, has been implicated as a key genome organizer. However, little is known about CTCF-associated higher-order chromatin structures at a global scale. Here we applied chromatin interaction analysis by paired-end tag (ChIA-PET) sequencing to elucidate the CTCF-chromatin interactome in pluripotent cells. From this analysis, we identified 1,480 cis- and 336 trans-interacting loci with high reproducibility and precision. Associating these chromatin interaction loci with their underlying epigenetic states, promoter activities, enhancer binding and nuclear lamina occupancy, we uncovered five distinct chromatin domains that suggest potential new models of CTCF function in chromatin organization and transcriptional control. Specifically, CTCF interactions demarcate chromatin-nuclear membrane attachments and influence proper gene expression through extensive cross-talk between promoters and regulatory elements. This highly complex nuclear organization offers insights toward the unifying principles that govern genome plasticity and function.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-729
    Produktbezeichnung:
    Anti-CTCF Antibody