Millipore Sigma Vibrant Logo
 

cell+signaling+technology


50 Results Erweiterte Suche  
Suchergebnisse
Produkte (0)
Dokumente (15)

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (15)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Downregulation of TFPI in breast cancer cells induces tyrosine phosphorylation signaling and increases metastatic growth by stimulating cell motility. 21849050

    Increased hemostatic activity is common in many cancer types and often causes additional complications and even death. Circumstantial evidence suggests that tissue factor pathway inhibitor-1 (TFPI) plays a role in cancer development. We recently reported that downregulation of TFPI inhibited apoptosis in a breast cancer cell line. In this study, we investigated the effects of TFPI on self-sustained growth and motility of these cells, and of another invasive breast cancer cell type (MDA-MB-231).Stable cell lines with TFPI (both α and β) and only TFPIβ downregulated were created using RNA interference technology. We investigated the ability of the transduced cells to grow, when seeded at low densities, and to form colonies, along with metastatic characteristics such as adhesion, migration and invasion.Downregulation of TFPI was associated with increased self-sustained cell growth. An increase in cell attachment and spreading was observed to collagen type I, together with elevated levels of integrin α2. Downregulation of TFPI also stimulated migration and invasion of cells, and elevated MMP activity was involved in the increased invasion observed. Surprisingly, equivalent results were observed when TFPIβ was downregulated, revealing a novel function of this isoform in cancer metastasis.Our results suggest an anti-metastatic effect of TFPI and may provide a novel therapeutic approach in cancer.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    16-105
    Produktbezeichnung:
    Anti-Phosphotyrosine Antibody, clone 4G10®, HRP conjugate
  • Analysis of gene expression regulated by the ETV5 transcription factor in OV90 ovarian cancer cells identifies FOXM1 overexpression in ovarian cancer. 22589409

    Epithelial ovarian cancer is the most lethal gynecologic malignancy and the fifth leading cause of cancer death in women in the Western world. ETS transcription factors have been implicated in the regulation of gene expression during a variety of biologic processes including cell growth and differentiation. We recently examined the role of the ETS transcription factor ETV5 in epithelial ovarian cancer and described ETV5 as being upregulated in ovarian tumor samples as compared with ovarian tissue controls. In ovarian cancer cells, we showed that ETV5 regulated the expression of cell adhesion molecules, enhancing ovarian cancer cell survival in anchorage-independent conditions and suggesting that it plays a role in ovarian cancer cell dissemination and metastasis into the peritoneal cavity. To understand the role of ETV5 transcription factor during ovarian cancer cell dissemination, we analyzed by gene expression microarray technology those genes whose expression was altered in an ovarian cancer cell line with a stable downregulation of ETV5. The analysis of the genes and signaling pathways under the control of ETV5 in OV90 cells has unraveled new signaling pathways that interact with ETV5, among them the cell-cycle progression and the TGFβ signaling pathway. In addition, we found that the downregulation of ETV5 reduced the expression of the oncogenic transcription factor FOXM1. Consistently, FOXM1 was overexpressed in ovarian tumor samples, and its transcriptional levels increased with ETV5 transcription in ovarian tumor samples. Moreover, FOXM1 expression levels increased with tumor grade, suggesting a role in the progression of ovarian cancer.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    06-182
  • Pleiotropic defects in TCR signaling in a Vav-1-null Jurkat T-cell line. 12234921

    The Rac/Rho-specific guanine nucleotide exchange factor, Vav-1, is a key component of the T-cell antigen receptor (TCR)-linked signaling machinery. Here we have used somatic cell gene-targeting technology to generate a Vav-1-deficient Jurkat T-cell line. The J.Vav1 cell line exhibits dramatic defects in TCR-dependent interleukin (IL)-2 promoter activation, accompanied by significant reductions in the activities of the NFAT(IL-2), NFkappaB, AP-1 and REAP transcription factors that bind to the IL-2 promoter region. In contrast, loss of Vav-1 had variable effects on early TCR-stimulated signaling events. J.Vav1 cells display a selective defect in sustained Ca(2+) signaling during TCR stimulation, and complementation of this abnormality by exogenously introduced Vav-1 is dependent on the Vav-1 calponin homology domain. While JNK activation was severely impaired, the stimulation of Ras, ERK and protein kinase C-theta activities, as well as the mobilization of lipid rafts, appeared normal in the J.Vav1 cells. Finally, evidence is presented to suggest that the alternative Vav family members, Vav-2 and Vav-3, are activated during TCR ligation, and partially compensate for the loss of Vav-1 in Jurkat T cells.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    07-464
    Produktbezeichnung:
    Anti-Vav3 Antibody, human
  • Characterization of heparin affin regulatory peptide signaling in human endothelial cells. 15797857

    Heparin affin regulatory peptide (HARP) is an 18-kDa secreted growth factor that has a high affinity for heparin and a potent role on tumor growth and angiogenesis. We have previously reported that HARP is mitogenic for different types of endothelial cells and also affects cell migration and differentiation (12). In this study we examined the signaling pathways involved in the migration and tube formation on matrigel of human umbilical vein endothelial cells (HUVEC) induced by HARP. We report for the first time that receptor-type protein-tyrosine phosphatase beta/zeta (RPTPbeta/zeta), which is a receptor for HARP in neuronal cell types, is also expressed in HUVEC. We also document that HARP signaling through RPTPbeta/zeta leads to activation of Src kinase, focal adhesion kinase, phosphatidylinositol 3-kinase, and Erk1/2. Sodium orthovanadate, chondroitin sulfate-C, PP1, wortmannin, LY294002, and U0126 inhibit HARP-mediated signaling and HUVEC migration and tube formation. In addition, RPTPbeta/zeta suppression using small interfering RNA technology interrupts intracellular signals and HUVEC migration and tube formation induced by HARP. These results establish the role of RPTPbeta/zeta as a receptor of HARP in HUVEC and elucidate the HARP signaling pathway in endothelial cells.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Polycystin-1 mediates mechanical strain-induced osteoblastic mechanoresponses via potentiation of intracellular calcium and Akt/β-catenin pathway. 24618832

    Mechanical regulation of bone formation involves a complex biophysical process, yet the underlying mechanisms remain poorly understood. Polycystin-1 (PC1) is postulated to function as a mechanosensory molecule mediating mechanical signal transduction in renal epithelial cells. To investigate the involvement of PC1 in mechanical strain-induced signaling cascades controlling osteogenesis, PKD1 gene was stably silenced in osteoblastic cell line MC3T3-E1 by using lentivirus-mediated shRNA technology. Here, our findings showed that mechanical tensile strain sufficiently enhanced osteogenic gene expressions and osteoblastic proliferation. However, PC1 deficiency resulted in the loss of the ability to sense external mechanical stimuli thereby promoting osteoblastic osteogenesis and proliferation. The signal pathways implicated in this process were intracellular calcium and Akt/β-catenin pathway. The basal levels of intracellular calcium, phospho-Akt, phospho-GSK-3β and nuclear accumulation of active β-catenin were significantly attenuated in PC1 deficient osteoblasts. In addition, PC1 deficiency impaired mechanical strain-induced potentiation of intracellular calcium, and activation of Akt-dependent and Wnt/β-catenin pathways, which was able to be partially reversed by calcium ionophore A23187 treatment. Furthermore, applications of LiCl or A23187 in PC1 deficient osteoblasts could promote osteoblastic differentiation and proliferation under mechanical strain conditions. Therefore, our results demonstrated that osteoblasts require mechanosensory molecule PC1 to adapt to external mechanical tensile strain thereby inducing osteoblastic mechanoresponse, partially through the potentiation of intracellular calcium and downstream Akt/β-catenin signaling pathway.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Activation of platelet-activating factor receptor and pleiotropic effects on tyrosine phospho-EGFR/Src/FAK/paxillin in ovarian cancer. 18632638

    Among the proinflammatory mediators, platelet-activating factor (PAF, 1-O-alkyl-2-acetyl-sn-glycero-3-phosphorylcholine) is a major primary and secondary messenger involved in intracellular and extracellular communication. Evidence suggests that PAF plays a significant role in oncogenic transformation, tumor growth, angiogenesis, and metastasis. However, PAF, with its receptor (PAFR) and their downstream signaling targets, has not been thoroughly studied in cancer. Here, we characterized the PAFR expression pattern in 4 normal human ovarian surface epithelial (HOSE) cell lines, 13 ovarian cancer cell lines, paraffin blocks (n = 84), and tissue microarrays (n = 230) from patients with ovarian cancer. Overexpression of PAFR was found in most nonmucinous types of ovarian cancer but not in HOSE and mucinous cancer cells. Correspondingly, PAF significantly induced cell proliferation and invasion only in PAFR-positive cells (i.e., OVCA429 and OVCA432), but not in PAFR-negative ovarian cells (HOSE and mucinous RMUG-L). The dependency of cell proliferation and invasion on PAFR was further confirmed using PAFR-specific small interfering RNA gene silencing probes, antibodies against PAFR and PAFR antagonist, ginkgolide B. Using quantitative multiplex phospho-antibody array technology, we found that tyrosine phosphorylation of EGFR/Src/FAK/paxillin was coordinately activated by PAF treatment, which was correlated with the activation of phosphatidylinositol 3-kinase and cyclin D1 as markers for cell proliferation, as well as matrix metalloproteinase 2 and 9 for invasion. Specific tyrosine Src inhibitor (PP2) reversibly blocked PAF-activated cancer cell proliferation and invasion. We suggest that PAFR is an essential upstream target of Src and other signal pathways to control the PAF-mediated cancer progression.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Interaction of the double-strand break repair kinase DNA-PK and estrogen receptor-alpha. 20219974

    Estrogens are suggested to play a role in the development and progression of proliferative diseases such as breast cancer. Like other steroid hormone receptors, the estrogen receptor-alpha (ERalpha) is a substrate of protein kinases, and phosphorylation has profound effects on its function and activity. Given the importance of DNA-dependent protein kinase (DNA-PK) for DNA repair, cell cycle progression, and survival, we hypothesized that it modulates ERalpha signaling. Here we show that, upon estrogen stimulation, DNA-PK forms a complex with ERalpha in a breast cancer cell line (MELN). DNA-PK phosphorylates ERalpha at Ser-118. Phosphorylation resulted in stabilization of ERalpha protein as inhibition of DNA-PK resulted in its proteasomal degradation. Activation of DNA-PK by double-strand breaks or its inhibition by siRNA technology demonstrated that estrogen-induced ERalpha activation and cell cycle progression is, at least, partially dependent on DNA-PK.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB463
    Produktbezeichnung:
    Anti-Estrogen Receptor Antibody, clone B10
  • The microRNA expression signature of bladder cancer by deep sequencing: the functional significance of the miR-195/497 cluster. 24520312

    Current genome-wide microRNA (miRNA) expression signature analysis using deep sequencing technologies can drive the discovery of novel cancer pathways regulated by oncogenic and/or tumor suppressive miRNAs. We determined the genome-wide miRNA expression signature in bladder cancer (BC) by deep sequencing technology. A total of ten small RNA libraries were sequenced (five BCs and five samples of histologically normal bladder epithelia (NBE)), and 13,190,619 to 18,559,060 clean small RNA reads were obtained. A total of 933 known miRNAs and 17 new miRNA candidates were detected in this analysis. Among the known miRNAs, a total of 60 miRNAs were significantly downregulated in BC compared with NBE. We also found that several miRNAs, such as miR-1/133a, miR-206/133b, let-7c/miR-99a, miR-143/145 and miR-195/497, were located close together at five distinct loci and constituted clustered miRNAs. Among these clustered miRNAs, we focused on the miR-195/497 cluster because this clustered miRNA had not been analyzed in BC. Transfection of mature miR-195 or miR-497 in two BC cell lines (BOY and T24) significantly inhibited cancer cell proliferation, migration and invasion, suggesting that the miR-195/497 cluster functioned as tumor suppressors in BC. Regarding the genes targeted by the miR-195/497 cluster, the TargetScan algorithm showed that 6,730 genes were putative miR-195/497 targets, and 113 significantly enriched signaling pathways were identified in this analysis. The "Pathways in cancer" category was the most enriched, involving 104 candidate target genes. Gene expression data revealed that 27 of 104 candidate target genes were actually upregulated in BC clinical specimens. Luciferase reporter assays and Western blotting demonstrated that BIRC5 and WNT7A were directly targeted by miR-195/497. In conclusion, aberrant expression of clustered miRNAs was identified by deep sequencing, and downregulation of miR-195/497 contributed to BC progression and metastasis. Tumor suppressive miRNA-mediated cancer pathways provide new insights into the potential mechanisms of BC oncogenesis.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB374
    Produktbezeichnung:
    Anti-Glyceraldehyde-3-Phosphate Dehydrogenase Antibody, clone 6C5
  • The soluble form of the tumor suppressor Lrig1 potently inhibits in vivo glioma growth irrespective of EGF receptor status. 23723255

    Deregulated growth factor signaling is a major driving force in the initiation and progression of glioblastoma. The tumor suppressor and stem cell marker Lrig1 is a negative regulator of the epidermal growth factor receptor (EGFR) family. Here, we addressed the therapeutic potential of the soluble form of Lrig1 (sLrig1) in glioblastoma treatment and the mechanism of sLrig1-induced growth inhibition.With use of encapsulated cells, recombinant sLrig1 was locally delivered in orthotopic glioblastoma xenografts generated from freshly isolated patient tumors. Tumor growth and mouse survival were evaluated. The efficacy of sLrig1 and the affected downstream signaling was studied in vitro and in vivo in glioma cells displaying variable expression of wild-type and/or a constitutively active EGFR mutant (EGFRvIII).Continuous interstitial delivery of sLrig1 in genetically diverse patient-derived glioma xenografts led to strong tumor growth inhibition. Glioma cell proliferation in vitro and tumor growth in vivo were potently inhibited by sLrig1, irrespective of EGFR expression levels. Of importance, tumor growth was also suppressed in EGFRvIII-driven glioma. sLrig1 induced cell cycle arrest without changing total receptor level or phosphorylation. Affected downstream effectors included MAP kinase but not AKT signaling. Of importance, local delivery of sLrig1 into established tumors led to a 32% survival advantage in treated mice.To our knowledge, this is the first report demonstrating that sLrig1 is a potent inhibitor of glioblastoma growth in clinically relevant experimental glioma models and that this effect is largely independent of EGFR status. The potent anti-tumor effect of sLrig1, in combination with cell encapsulation technology for in situ delivery, holds promise for future treatment of glioblastoma.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Mammary epithelial-specific disruption of focal adhesion kinase retards tumor formation and metastasis in a transgenic mouse model of human breast cancer. 18845837

    Focal adhesion kinase (FAK) is a central regulator of the focal adhesion, influencing cell proliferation, survival, and migration. Despite evidence demonstrating FAK overexpression in human cancer, its role in tumor initiation and progression is not well understood. Using Cre/LoxP technology to specifically knockout FAK in the mammary epithelium, we showed that FAK is not required for tumor initiation but is required for tumor progression. The mechanistic underpinnings of these results suggested that FAK regulates clinically relevant gene signatures and multiple signaling complexes associated with tumor progression and metastasis, such as Src, ERK, and p130Cas. Furthermore, a systems-level analysis identified FAK as a major regulator of the tumor transcriptome, influencing genes associated with adhesion and growth factor signaling pathways, and their cross talk. Additionally, FAK was shown to down-regulate the expression of clinically relevant proliferation- and metastasis-associated gene signatures, as well as an enriched group of genes associated with the G(2) and G(2)/M phases of the cell cycle. Computational analysis of transcription factor-binding sites within ontology-enriched or clustered gene sets suggested that the differentially expressed proliferation- and metastasis-associated genes in FAK-null cells were regulated through a common set of transcription factors, including p53. Therefore, FAK acts as a primary node in the activated signaling network in transformed motile cells and is a prime candidate for novel therapeutic interventions to treat aggressive human breast cancers.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    05-537
    Produktbezeichnung:
    Anti-FAK Antibody, clone 4.47