Wenn Sie das Fenster schließen, wird Ihre Konfiguration nicht gespeichert, es sei denn, Sie haben Ihren Artikel in die Bestellung aufgenommen oder zu Ihren Favoriten hinzugefügt.
Klicken Sie auf OK, um das MILLIPLEX® MAP-Tool zu schließen oder auf Abbrechen, um zu Ihrer Auswahl zurückzukehren.
Wählen Sie konfigurierbare Panels & Premixed-Kits - ODER - Kits für die zelluläre Signaltransduktion & MAPmates™
Konfigurieren Sie Ihre MILLIPLEX® MAP-Kits und lassen sich den Preis anzeigen.
Konfigurierbare Panels & Premixed-Kits
Unser breites Angebot enthält Multiplex-Panels, für die Sie die Analyten auswählen können, die am besten für Ihre Anwendung geeignet sind. Unter einem separaten Register können Sie das Premixed-Cytokin-Format oder ein Singleplex-Kit wählen.
Kits für die zelluläre Signaltransduktion & MAPmates™
Wählen Sie gebrauchsfertige Kits zur Erforschung gesamter Signalwege oder Prozesse. Oder konfigurieren Sie Ihre eigenen Kits mit Singleplex MAPmates™.
Die folgenden MAPmates™ sollten nicht zusammen analysiert werden: -MAPmates™, die einen unterschiedlichen Assaypuffer erfordern. -Phosphospezifische und MAPmate™ Gesamtkombinationen wie Gesamt-GSK3β und Gesamt-GSK3β (Ser 9). -PanTyr und locusspezifische MAPmates™, z.B. Phospho-EGF-Rezeptor und Phospho-STAT1 (Tyr701). -Mehr als 1 Phospho-MAPmate™ für ein einziges Target (Akt, STAT3). -GAPDH und β-Tubulin können nicht mit Kits oder MAPmates™, die panTyr enthalten, analysiert werden.
.
Bestellnummer
Bestellinformationen
St./Pkg.
Liste
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Wählen Sie bitte Spezies, Panelart, Kit oder Probenart
Um Ihr MILLIPLEX® MAP-Kit zu konfigurieren, wählen Sie zunächst eine Spezies, eine Panelart und/oder ein Kit.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Spezies
Panelart
Gewähltes Kit
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
96-Well Plate
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
Weitere Reagenzien hinzufügen (MAPmates erfordern die Verwendung eines Puffer- und Detektionskits)
Menge
Bestellnummer
Bestellinformationen
St./Pkg.
Listenpreis
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Platzsparende Option Kunden, die mehrere Kits kaufen, können ihre Multiplex-Assaykomponenten in Kunststoffbeuteln anstelle von Packungen erhalten, um eine kompaktere Lagerung zu ermöglichen.
Dieser Artikel wurde zu Ihren Favoriten hinzugefügt.
Das Produkt wurde in Ihre Bestellung aufgenommen
Sie können nun ein weiteres Kit konfigurieren, ein Premixed-Kit wählen, zur Kasse gehen oder das Bestell-Tool schließen.
Capacitance measurements were used to investigate the molecular mechanisms by which imidazoline compounds inhibit glucagon release in rat pancreatic alpha-cells. The imidazoline compound phentolamine reversibly decreased depolarization-evoked exocytosis >80% without affecting the whole-cell Ca(2+) current. During intracellular application through the recording pipette, phentolamine produced a concentration-dependent decrease in the rate of exocytosis (IC(50) = 9.7 microm). Another imidazoline compound, RX871024, exhibited similar effects on exocytosis (IC(50) = 13 microm). These actions were dependent on activation of pertussis toxin-sensitive G(i2) proteins but were not associated with stimulation of ATP-sensitive K(+) channels or adenylate cyclase activity. The inhibitory effect of phentolamine on exocytosis resulted from activation of the protein phosphatase calcineurin and was abolished by cyclosporin A and deltamethrin. Exocytosis was not affected by intracellular application of specific alpha(2), I(1), and I(2) ligands. Phentolamine reduced glucagon release (IC(50) = 1.2 microm) from intact islets by 40%, an effect abolished by pertussis toxin, cyclosporin A, and deltamethrin. These data suggest that imidazoline compounds inhibit glucagon secretion via G(i2)-dependent activation of calcineurin in the pancreatic alpha-cell. The imidazoline binding site is likely to be localized intracellularly and probably closely associated with the secretory granules.
Direct injection of agents into the dorsal root ganglia (DRGs) offers the opportunity to manipulate sensory neuron function at a segmental level to explore pathophysiology of painful conditions. However, there is no described method that has been validated in detail for such injections in adult rats. We have found that 2 μl of dye injected through a pulled glass pipette directly into the distal DRG, exposed by a minimal foraminotomy, produces complete filling of the DRG with limited extension into the spinal roots. Injection into the spinal nerve required 3 μl to achieve comparable DRG filling, produced preferential spread into the ventral root, and was accompanied by substantial leakage of injected solution from the injection site. Injections into the sciatic nerve of volumes up to 10 μl did not reach the DRG. Transient hypersensitivity to mechanical stimulation at threshold (von Frey) and noxious levels (pin) developed after 2 μl saline injection directly into the DRG that was in part attributable to the surgical exposure procedure alone. Only minimal astrocyte activation in the spinal dorsal horn was evident after DRG saline injections. Injection of adeno-associated virus (AAV) vector conveying green fluorescent protein (GFP) transgene resulted in expression as soon as 1 day after injection into the DRG, including fibers in the spinal dorsal horn and columns. AAV injection into the DRG produced additional thermal hypersensitivity and withdrawal from the stroke of a brush and compromised motor performance. These findings demonstrate a method for selective injection of agents into single DRGs for anatomically restricted actions.
Dokumententyp:
Referenz
Produkbestellnummer:
AB5804
Produktbezeichnung:
Anti-Glial Fibrillary Acidic Protein (GFAP) Antibody
Metabolite identification studies remain an integral part of pre-clinical and clinical drug development programs. Analysis of biological matrices, such as plasma, urine, feces and bile, pose challenges due to the large amounts of endogenous components that can mask a drug and its metabolites. Although direct infusion nanoelectrospray using capillaries has been used routinely for proteomic studies, metabolite identification has traditionally employed liquid chromatographic (LC) separation prior to analysis. A method is described here for rapid metabolite profiling in biological fluids that involves initial sample clean-up using pipette tips packed with reversed-phase material (i.e. ZipTips) to remove matrix components followed by direct infusion nanoelectrospray on an LTQ/Orbitrap mass spectrometer using a protonated polydimethylcyclosiloxane cluster ion for internal calibration. We re-examined samples collected from a prazosin metabolism study in the rat. Results are presented that demonstrate that sub parts-per-million accuracies can be achieved on molecular ions, facilitating identification of metabolites, and on product ions, facilitating structural assignments. The data also show that the high-resolution measurements (R = 100,000 at m/z 400) enable metabolites of interest to be resolved from endogenous components. The extended analysis times available with nanospray enables signal averaging for 1 min or more that is valuable when metabolites are present in low concentrations as encountered here in plasma and brain. Using this approach, the metabolic fate of a drug can be quickly obtained. A limitation of this approach is that metabolites that are structural isomers cannot be distinguished, although such information can be collected by LC/MS during follow-on experiments
Gap junctions provide a pathway for the direct intercellular exchange of ions and small signaling molecules. Gap junctional coupling between retinal astrocytes and between astrocytes and Müller cells, the principal glia of vertebrate retinas, has been previously demonstrated by the intercellular transfer of gap-junction permeant tracers. However, functional gap junctions have yet to be demonstrated between mammalian Müller cells. In the present study, when the gap-junction permeant tracers Neurobiotin and Lucifer yellow were injected into a Müller cell via a patch pipette, the tracers transferred to at least one additional cell in more than half of the cases examined. Simultaneous whole-cell recordings from pairs of Müller cells in the isolated rabbit retina revealed electrical coupling between closely neighboring cells, confirming the presence of functional gap junctions between rabbit Müller cells. The limited degree of this coupling suggests that Müller cell-Müller cell gap junctions may coordinate the functions of small ensembles of these glial cells. Immunohistochemistry and immunoblotting were used to identify the connexins in rabbit retinal glia. Connexin30 (Cx30) and connexin43 (Cx43) immunoreactivities were associated with astrocytes in the medullary ray region of the retinas of both pigmented and albino rabbits. Connexin43 was also found in Müller cells, but antibody recognition differed between astrocytic and Müller cell connexin43.
It is becoming increasingly clear that leptin is not only a hormone regulating energy homeostasis but also a neurotrophic factor impacting a number of brain regions, including the hippocampus. Although leptin promotes the development of GABAergic transmission in the hypothalamus, little is known about its action on the GABAergic system in the hippocampus. Here we show that leptin modulates GABAergic transmission onto developing CA3 pyramidal cells of newborn rats. Specifically, leptin induces a long-lasting potentiation (LLP-GABAA) of miniature GABAA receptor-mediated postsynaptic current (GABAA-PSC) frequency. Leptin also increases the amplitude of evoked GABAA-PSCs in a subset of neurons along with a decrease in the coefficient of variation and no change in the paired-pulse ratio, pointing to an increased recruitment of functional synapses. Adding pharmacological blockers to the recording pipette showed that the leptin-induced LLP-GABAA requires postsynaptic calcium released from internal stores, as well as postsynaptic MAPK/ERK kinases 1 and/or 2 (MEK1/2), phosphoinositide 3 kinase (PI3K) and calcium-calmodulin kinase kinase (CaMKK). Finally, study of CA3 pyramidal cells in leptin-deficient ob/ob mice revealed a reduction in the basal frequency of miniature GABAA-PSCs compared to wild type littermates. In addition, presynaptic GAD65 immunostaining was reduced in the CA3 stratum pyramidale of mutant animals, both results converging to suggest a decreased number of functional GABAergic synapses in ob/ob mice. Overall, these results show that leptin potentiates and promotes the development of GABAergic synaptic transmission in the developing hippocampus likely via an increase in the number of functional synapses, and provide insights into the intracellular pathways mediating this effect. This study further extends the scope of leptin's neurotrophic action to a key regulator of hippocampal development and function, namely GABAergic transmission.
Protein kinase C (PKC) enhances NMDA receptor (NMDAR)-mediated currents and promotes NMDAR delivery to the cell surface via SNARE-dependent exocytosis. Although the mechanisms of PKC potentiation are established, the molecular target of PKC is unclear. Here we show that synaptosomal-associated protein of 25 kDa (SNAP-25), a SNARE protein, is functionally relevant to PKC-dependent NMDAR insertion, and identify serine residue-187 as the molecular target of PKC phosphorylation. Constitutively active PKC delivered via the patch pipette potentiated NMDA (but not AMPA) whole-cell currents in hippocampal neurons. Expression of RNAi targeting SNAP-25 or mutant SNAP-25(S187A) and/or acute disruption of the SNARE complex by treatment with BoNT A, BoNT B or SNAP-25 C-terminal blocking peptide abolished NMDAR potentiation. A SNAP-25 peptide and function-blocking antibody suppressed PKC potentiation of NMDA EPSCs at mossy fiber-CA3 synapses. These findings identify SNAP-25 as the target of PKC phosphorylation critical to PKC-dependent incorporation of synaptic NMDARs and document a postsynaptic action of this major SNARE protein relevant to synaptic plasticity.