Millipore Sigma Vibrant Logo
 

retina


1154 Results Erweiterte Suche  
Suchergebnisse
Dokumente (1.110)

Suche eingrenzen Grenzen Sie Ihre Suche mit den nachstehenden Filtern ein

Dokumententyp

  • (1.058)
  • (51)
  • (1)
Finden Sie nicht, was Sie suchen?
Kontaktieren Sie bitten
den Kundenservice

 
Benötigen Sie Hilfe, um ein Dokument zu finden?
  • Verwenden Sie die Dokumentensuche, um nach Analysenzertifikaten, Qualitätszertifikaten oder Sicherheitsdatenblättern zu suchen.
  • Wenn Sie bei der Suche einer Gebrauchsanleitung oder eines Benutzerhandbuchs Hilfe benötigen, kontaktieren Sie bitte den Kundenservice.
  • Canine retina has a primate fovea-like bouquet of cone photoreceptors which is affected by inherited macular degenerations. 24599007

    Retinal areas of specialization confer vertebrates with the ability to scrutinize corresponding regions of their visual field with greater resolution. A highly specialized area found in haplorhine primates (including humans) is the fovea centralis which is defined by a high density of cone photoreceptors connected individually to interneurons, and retinal ganglion cells (RGCs) that are offset to form a pit lacking retinal capillaries and inner retinal neurons at its center. In dogs, a local increase in RGC density is found in a topographically comparable retinal area defined as the area centralis. While the canine retina is devoid of a foveal pit, no detailed examination of the photoreceptors within the area centralis has been reported. Using both in vivo and ex vivo imaging, we identified a retinal region with a primate fovea-like cone photoreceptor density but without the excavation of the inner retina. Similar anatomical structure observed in rare human subjects has been named fovea-plana. In addition, dogs with mutations in two different genes, that cause macular degeneration in humans, developed earliest disease at the newly-identified canine fovea-like area. Our results challenge the dogma that within the phylogenetic tree of mammals, haplorhine primates with a fovea are the sole lineage in which the retina has a central bouquet of cones. Furthermore, a predilection for naturally-occurring retinal degenerations to alter this cone-enriched area fills the void for a clinically-relevant animal model of human macular degenerations.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Mouse retina explants after long-term culture in serum free medium. 11719023

    The neonatal mouse retina remains viable as an explant in serum-supplemented growth media for more than 4 weeks. Interpretation of drug effects on this tissue is compromised by the enigmatic composition of the serum. We sought to remove this ambiguity by culturing neonatal as well as late postnatal mouse retina in serum-free nutrient medium. In this study three important observations were made, (1) there is histotypic development of neonatal as well as preservation of late postnatal mouse retinal structure during long-term culture in serum-free medium, although the late postnatal tissue tends to show some loss of cells in the outer nuclear layer. (2) Protein expression in explant photoreceptor cells was similar to that in the litter-matched ones, except for green cone opsin and interphotoreceptor retinoid-binding protein, although mRNA of the latter is present at similar amounts as in age-matched in vivo controls. (3) Cells of the inner retina stained by antibodies to calcium-binding proteins display some novel sprouting of processes. The results show that the mouse retina can be cultured as an explant for more than 4 weeks in a serum-free medium. This represents an important step forward because, (1) the possibility of interference of drug effects by unknown serum factors has been eliminated; and (2) the spent culture medium can be analyzed to investigate biomolecules released by the retina in vitro.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB1572
    Produktbezeichnung:
    Anti-Parvalbumin Antibody
  • Inner retina remodeling in a mouse model of stargardt-like macular dystrophy (STGD3). 19933199

    Purpose. To investigate the impact of progressive age-related photoreceptor degeneration on retinal integrity in Stargardt-like macular dystrophy (STGD3). Methods. The structural design of the inner retina of the ELOVL4 transgenic mouse model of STGD3 was compared with that of age-matched littermate wild-type (WT) mice from 1 to 24 months of age by using immunohistofluorescence and confocal microscopy and by relying on antibodies against cell-type-specific markers, synapse-associated proteins, and neurotransmitters. Results. Müller cell reactivity occurred at the earliest age studied, before photoreceptor loss. This finding is perhaps not surprising, considering the cell's ubiquitous roles in retina homeostasis. Second-order neurons displayed salient morphologic changes as a function of photoreceptoral input loss. Age-related sprouting of dendritic fibers from rod bipolar and horizontal cells into the ONL did not occur. In contrast, with the loss of photoreceptor sensory input, these second-order neurons progressively bore fewer synapses. After rod loss, the few remaining cones showed abnormal opsin expression, revealing tortuous branched axons. After complete ONL loss (beyond 18 months of age), localized areas of extreme retinal disruptions were observed in the central retina. RPE cell invasion, dense networks of strongly reactive Müller cell processes, and invagination of axons and blood vessels were distinctive features of these regions. In addition, otherwise unaffected cholinergic amacrine cells displayed severe perturbation of their cell bodies and synaptic plexi in these areas. Conclusions. Remodeling in ELOVL4 transgenic mice follows a pattern similar to that reported after other types of hereditary retinopathies in animals and humans, pointing to a potentially common pathophysiologic mechanism.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Retina restored and brain abnormalities ameliorated by single-copy knock-in of human NR2E1 in null mice. 22290436

    Nr2e1 encodes a stem cell fate determinant of the mouse forebrain and retina. Abnormal regulation of this gene results in retinal, brain, and behavioral abnormalities in mice. However, little is known about the functionality of human NR2E1. We investigated this functionality using a novel knock-in humanized-mouse strain carrying a single-copy bacterial artificial chromosome (BAC). We also documented, for the first time, the expression pattern of the human BAC, using an NR2E1-lacZ reporter strain. Unexpectedly, cerebrum and olfactory bulb hypoplasia, hallmarks of the Nr2e1-null phenotype, were not fully corrected in animals harboring one functional copy of human NR2E1. These results correlated with an absence of NR2E1-lacZ reporter expression in the dorsal pallium of embryos and proliferative cells of adult brains. Surprisingly, retinal histology and electroretinograms demonstrated complete correction of the retina-null phenotype. These results correlated with appropriate expression of the NR2E1-lacZ reporter in developing and adult retina. We conclude that the human BAC contained all the elements allowing correction of the mouse-null phenotype in the retina, while missing key regulatory regions important for proper spatiotemporal brain expression. This is the first time a separation of regulatory mechanisms governing NR2E1 has been demonstrated. Furthermore, candidate genomic regions controlling expression in proliferating cells during neurogenesis were identified.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB377
    Produktbezeichnung:
    Anti-NeuN Antibody, clone A60
  • The interaction of the retina cell surface N-acetylgalactosaminylphosphotransferase with an endogenous proteoglycan ligand results in inhibition of cadherin-mediated adhe ... 7775582

    We have previously shown that the binding to cells of a monoclonal antibody directed against the chick neural retina N-acetylgalactosaminylphosphotransferase (GalNAcPTase) results in inhibition of cadherin-mediated adhesion and neurite outgrowth. We hypothesized that the antibody mimics the action of an endogenous ligand. Chondroitin sulfate proteoglycans (CSPGs) are potential ligands because they inhibit adhesion and neurite outgrowth and are present in situ at barriers to neuronal growth. We therefore assayed purified CSPGs for their ability to inhibit homophilic cadherin-mediated adhesion and neurite outgrowth, as well as their ability to bind directly to the GalNAcPTase. A proteoglycan with a 250-kD core protein following removal of chondroitin sulfate chains (250-kD PG) inhibits cadherin-mediated adhesion and neurite outgrowth whether presented as the core protein or as a proteoglycan monomer bearing chondroitin sulfate. A proteoglycan with a 400-kD core protein is not inhibitory in either core protein or monomer form. Treatment of cells with phosphatidylinositol-specific phospholipase C, which removes cell surface GalNAcPTase, abolishes this inhibitory effect. Binding of the 250-kD core protein to cells is competed by the anti-GalNAcPTase antibody 1B11, suggesting that 1B11 and the 250-kD core protein bind to the same site or in close proximity. Moreover, soluble GalNAcPTase binds to the immobilized 250-kD core protein but not to the immobilized 400-kD core protein. Concomitant with inhibition of cadherin mediated adhesion, binding of the 250-kD core protein to the GalNAcPTase on cells results in the enhanced tyrosine phosphorylation of beta-catenin and the uncoupling of N-cadherin from its association with the cytoskeleton. Moreover, the 250-kD PG is present in embryonic chick retina and brain and is associated with the GalNAcPTase in situ. We conclude that the 250-kD PG is an endogenous ligand for the GalNAcPTase. Binding of the 250-kD PG to the GalNAcPTase initiates a signal cascade, involving the tyrosine phosphorylation of beta-catenin, which alters the association of cadherin with the actin-containing cytoskeleton and thereby inhibits adhesion and neurite outgrowth. Regulation of the temporal and spatial expression patterns of each member of the GalNacPTase/250-kD PG interactive pair may create opportunities for interaction that influence the course of development through effects on cadherin-based morphogenetic processes.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Apoptosis of human retina and retinal pigment cells induced by human cytomegalovirus infection. 11914609

    Human cytomegalovirus (HCMV) retinitis is the most common ocular opportunistic infection in immunocompromised patients and AIDS. It often leads to blindness if left untreated. The question as to how HCMV infection causes retinal pathogenesis and visual destruction in AIDS patients remains unresolved. To answer the question, by using terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay, we detected the significant signals of apoptotic cells at the same sites in the HCMV-infected retina of AIDS patients as compared to AIDS patients without HCMV retinitis. In vitro study also revealed apoptosis induced by HCMV infection in human retinal pigment epithelium cells, mediated by activation of caspase 3 and poly(ADP-ribose) polymerase pathway. These results strongly suggest the fundamental role of HCMV-induced apoptosis in mediating cell death in infected human retina and retinal pigment epithelium cells to make severe visual impairment.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    MAB810
  • Endocannabinoids in the intact retina: 3 H-anandamide uptake, fatty acid amide hydrolase immunoreactivity and hydrolysis of anandamide. 16469181

    There is much evidence for an endocannabinoid system in the retina. However, neither the distribution of endocannabinoid uptake, the regulation of endocannabinoid levels, nor the role of endocannabinoid metabolism have been investigated in the retina. Here we focused on one endocannabinoid, anandamide (AEA), and its major hydrolyzing enzyme, fatty acid amide hydrolase (FAAH), in the goldfish retina. Immunoblots of FAAH immunoreactivity (IR) in goldfish retina, brain and rat retina, and brain homogenates showed a single band at 61 kDa that was blocked by preadsorption with peptide antigen. Specific FAAH IR (blocked by preadsorption) was most prominent over Müller cells and cone inner segments. Weaker label was observed over some amacrine cells, rare cell bodies in the ganglion cell layer, and in four lamina in the inner plexiform layer. FAAH activity assays showed that goldfish-retinal and brain homogenates hydrolyzed AEA at rates comparable to rat brain homogenate, and the hydrolysis was inhibited by methyl arachidonyl fluorophosphonate (MAFP) and N-(4 hydroxyphenyl)-arachidonamide (AM404), with IC(50)s of 21 nM and 1.5 microM, respectively. Cellular 3H-AEA uptake in the intact retina was determined by in vitro autoradiography. Silver-grain accumulation at 20 degrees C was most prominent over cone photoreceptors and Müller cells. Uptake was significantly reduced when retinas were incubated at 4 degrees C, or preincubated with 100 nM MAFP or 10 microM AM404. There was no differential effect of blocking conditions on the distribution of silver grains over cones or Müller cells. The codistribution of FAAH IR and 3H-AEA uptake in cones and Müller cells suggests that the bulk clearance of AEA in the retina occurs as a consequence of a concentration gradient created by FAAH activity. We conclude that endocannabinoids are present in the goldfish retina and underlay the electrophysiological effects of cannabinoid ligands previously shown on goldfish cones and bipolar cells.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    AB5644P
    Produktbezeichnung:
    Anti-Fatty Acid Amide Hydrolase Antibody
  • A novel type of glial cell in the retina is stimulated by insulin-like growth factor 1 and may exacerbate damage to neurons and Müller glia. 19941335

    Recent studies have demonstrated that insulin can have profound affects on the survival of neurons within the retina. The purpose of this study was to determine how insulin-like growth factor 1 (IGF1) influences retinal cells; in particular, the glial cells. We identify a novel type of glial cell in the avian retina and provide evidence that these cells can respond to acute damage and IGF1. In normal retinas, we found a distinct cell-type, scattered across the ganglion cell and inner plexiform layers that express Sox2, Sox9, Nkx2.2, vimentin, and transitin, the avian homologue of mammalian nestin. These glial cells have a unique immunohistochemical profile, morphology, and distribution that are distinct among other known types of retinal glia, including microglia, oligodendrocytes, astrocytes, and Muller glia. We termed these cells nonastrocytic inner retinal glia-like (NIRG) cells. We found that the NIRG cells may express the IGF1 receptor and respond to IGF1 by proliferating, migrating distally into the retina, and upregulating transitin. In addition, IGF1 stimulated microglia to become reactive and upregulate lysosomal membrane glycoprotein and CD45. With microglia and NIRG cells stimulated by IGF1 there were elevated levels of cell death and numerous focal detachments across the retina in response to excitotoxic damage. Cell death was prominent within the areas of detachment coinciding with a stark loss of Müller glia and accumulation of NIRG cells. We conclude that NIRG cells are a novel type of retinal glia that is sensitive to IGF1 and whose activity may impact the survival of neurons and Müller glia.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere
  • Vsx2 in the zebrafish retina: restricted lineages through derepression. 19344499

    The neurons in the vertebrate retina arise from multipotent retinal progenitor cells (RPCs). It is not clear, however, which progenitors are multipotent or why they are multipotent.In this study we show that the homeodomain transcription factor Vsx2 is initially expressed throughout the retinal epithelium, but later it is downregulated in all but a minor population of bipolar cells and all Müller glia. The Vsx2-negative daughters of Vsx2-positive RPCs divide and give rise to all other cell types in the retina. Vsx2 is a repressor whose targets include transcription factors such as Vsx1, which is expressed in the progenitors of distinct non-Vsx2 bipolars, and the basic helix-loop-helix transcription factor Ath5, which restricts the fate of progenitors to retinal ganglion cells, horizontal cells, amacrine cells and photoreceptors fates. Foxn4, expressed in the progenitors of amacrine and horizontal cells, is also negatively regulated by Vsx2.Our data thus suggest Vsx2-positive RPCs are fully multipotent retinal progenitors and that when Vsx2 is downregulated, Vsx2-negative progenitors escape Vsx2 repression and so are able to express factors that restrict lineage potential.
    Dokumententyp:
    Referenz
    Produkbestellnummer:
    Mehrere
    Produktbezeichnung:
    Mehrere