Accéder au contenu
Merck

483265

Antimony(III) acetate

99.99% trace metals basis

Synonyme(s) :

Antimony acetate, Antimony triacetate, Triacetoxystibine

Se connecter pour consulter les tarifs organisationnels et contractuels.

Sélectionner une taille de conditionnement


A propos de cet article

Formule linéaire :
(CH3CO2)3Sb
Numéro CAS:
Poids moléculaire :
298.89
NACRES:
NA.23
PubChem Substance ID:
UNSPSC Code:
12352103
EC Number:
230-043-2
MDL number:
Service technique
Besoin d'aide ? Notre équipe de scientifiques expérimentés est là pour vous.
Laissez-nous vous aider
Service technique
Besoin d'aide ? Notre équipe de scientifiques expérimentés est là pour vous.
Laissez-nous vous aider

InChI key

JVLRYPRBKSMEBF-UHFFFAOYSA-K

InChI

1S/3C2H4O2.Sb/c3*1-2(3)4;/h3*1H3,(H,3,4);/q;;;+3/p-3

SMILES string

CC(=O)O[Sb](OC(C)=O)OC(C)=O

assay

99.99% trace metals basis

Quality Level

reaction suitability

core: antimony, reagent type: catalyst

mp

126-131 °C (lit.)

density

1.22 g/mL at 25 °C (lit.)

General description

Antimony(III) Acetate is an is a high-purity compound (99.9% trace metals basis) that is widely used as a precursor in chemical vapor deposition (CVD) and Sol-gel atomic layer deposition (ALD) methods for the fabrication of antimony-based thin films, which are used in optoelectronic devices, including solar cells, and photodetectors. It is also employed as a dopant in semiconductor materials to modify their electrical and optical properties. Additionally, it serves as a catalyst in polymerization reactions and utilized in the synthesis of antimony-based nanoparticles and nanostructures, which find applications in energy storage systems such as batteries and supercapacitors.

Application

  • New Complexes of Antimony(III) with Tridentate O,E,O-Ligands: Explores new antimony(III) complexes providing insights into their bonding and potential applications in materials science (U Böhme, M Herbig, 2023).
  • Antimony (III) acetate as a catalyst for synthesis of xanthenes: Details the use of antimony(III) acetate as a catalyst in the synthesis of biologically active compounds, showcasing its efficiency in organic chemistry (F Hakimi, A Hassanabadi, 2015).

Features and Benefits

Antimony(III) acetate exhibits:
  • 99.99% trace metals basis (<150 ppm) ensures minimal contamination with consistent performance in critical applications, leading to better outcomes.
  • Suitable catalyst to produce synthetic fibres. It is moderately soluble in water
  • Suitable for solvent free reactions.

pictograms

Exclamation markEnvironment

signalword

Warning

Hazard Classifications

Acute Tox. 4 Inhalation - Acute Tox. 4 Oral - Aquatic Chronic 2

Classe de stockage

11 - Combustible Solids

wgk

WGK 2

flash_point_f

Not applicable

flash_point_c

Not applicable


Faites votre choix parmi les versions les plus récentes :

Certificats d'analyse (COA)

Lot/Batch Number

Vous ne trouvez pas la bonne version ?

Si vous avez besoin d'une version particulière, vous pouvez rechercher un certificat spécifique par le numéro de lot.

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Dandan Xie et al.
Nanoscale, 10(30), 14546-14553 (2018-07-20)
(Ag,Sn) co-doped Cu3SbSe4 nanocrystals are obtained via a facile microwave-assisted solvothermal method, and their thermoelectric properties are investigated in the temperature range from 300 K to 623 K. Sn-doping on Sb sites dramatically increases the carrier concentration and thus the
Yosra Chebbi et al.
Polymers, 11(3) (2019-04-10)
In this study, the synthesis of poly(ethylene furanoate) (PEF), catalyzed by five different catalysts-antimony acetate (III) (Sb Ac), zirconium (IV) isopropoxide isopropanal (Zr Is Ip), antimony (III) oxide (Sb Ox), zirconium (IV) 2,4-pentanedionate (Zr Pe) and germanium (IV) oxide (Ge
Wasim J Mir et al.
Scientific reports, 7(1), 9647-9647 (2017-08-31)
We investigate the potential use of colloidal nanoplates of Sb
Tianxin Bai et al.
Advanced materials (Deerfield Beach, Fla.), 33(8), e2007215-e2007215 (2021-01-21)
The colloidal synthesis of a new type of lead-free halide quadruple-perovskite nanocrystals (NCs) is reported. The photoluminescence quantum yield and charge-carrier lifetime of quadruple-perovskite NCs can be enhanced by 96 and 77-fold, respectively, via metal alloying. Study of charge-carrier dynamics
Bin Zhou et al.
Chemistry (Weinheim an der Bergstrasse, Germany), 21(31), 11143-11151 (2015-06-23)
We report an efficient approach to the synthesis of AgSbS2 nanocrystals (NCs) by colloidal chemistry. The size of the AgSbS2 NCs can be tuned from 5.3 to 58.3 nm with narrow size distributions by selection of appropriate precursors and fine control

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique