Accéder au contenu
Merck

SCR001

ES Cell Characterization Kit

The Embryonic Stem Cell Characterization Kit phenotypically assesses the differentiation status of ES cells by measuring their AP activity, cell-surface stage-specific antigens (SSEA-1, SSEA-4) as well as expression of TRA-1-60, TRA-1-81 antigens.

Se connecter pour consulter les tarifs organisationnels et contractuels.

Sélectionner une taille de conditionnement


A propos de cet article

UNSPSC Code:
12161503
NACRES:
NA.43
eCl@ss:
32161000
Service technique
Besoin d'aide ? Notre équipe de scientifiques expérimentés est là pour vous.
Laissez-nous vous aider
Service technique
Besoin d'aide ? Notre équipe de scientifiques expérimentés est là pour vous.
Laissez-nous vous aider

species reactivity

human, mouse, rat

manufacturer/tradename

Chemicon®

technique(s)

cell culture | stem cell: suitable, immunocytochemistry: suitable

input

sample type: human embryonic stem cell(s)
sample type: mouse embryonic stem cell(s)
sample type induced pluripotent stem cell(s)

shipped in

wet ice

Quality Level

General description

The ES Cell Characterization Kit consists of two components used for alkaline phosphatase activity determination as well as four ES cell-specific antibodies required to perform 100 tests (including controls).

INTRODUCTION

Stem cells have become the subject of extensive investigation recently, partly due to their therapeutic potential and because they raise several fundamental issues concerning the regulation of proliferation and differentiation.

Embryonic stem (ES) cells are derived from totipotent cells of the early mammalian embryo and are capable of unlimited, undifferentiated proliferation in vitro [Evans and Kaufman, 1981; Martin, 1981; Morrison, 1997]. Undifferentiated mouse ES cells can be maintained for an extensive period of time in media containing the cytokine, leukemia-inhibitory factor (LIF) or CHEMICON′s proprietary ES cell culture reagent, ESGRO® [Smith, 1988; Williams, 1988]. However, upon removal of LIF from the culture medium, in vitro, the mouse ES cells start to differentiate into cells derived from all three germ layers. In contrast, human ES cultures require mouse fibroblasts as feeder cells and cannot be maintained with LIF for self-renewal [Thomson and Marshall, 1998; Shamblott, 1988].

The undifferentiated state of the embryonic stem cell is characterized by a high level of expression of alkaline phosphatase (AP) [Pease, 1990] and the stem cell transcription factor, Oct-4. Nevertheless, these ES cells also exhibit marked differences from their murine counterparts in regards to their expression of stage-specific embryonic antigen (SSEA), that typify undifferentiated human ES and embryonic carcinoma (EC) cells.

SSEA-1, a carbohydrate antigen, is a fucosylated derivative of type 2 polylactosamine and appears during late cleavage stages of mouse embryos. It is strongly expressed by undifferentiated, murine ES cells [Solter and Knowles, 1978; Gooi, 1981]. Upon differentiation, murine ES cells are characterized by the loss of SSEA-1 expression and may be accompanied, in some instances, by the appearance of SSEA-3 and SSEA-4 [Solter, 1979]. In contrast, human ES and EC cells typically express SSEA-3 and SSEA-4 but not SSEA-1, while their differentiation is characterized by downregulation of SSEA-3 and SSEA-4 and an upregulation of SSEA-1 [Andrews, 1984; Fenderson and Andrews; 1987]. Undifferentiated, human ES cells also express the keratin sulphate-associated antigens, TRA-1-60 and TRA-1-81 [Andrews and Banting, 1984].

CHEMICON′s ES Cell Characterization Kit (Catalog number SCR001) is a specific and sensitive tool for the phenotypic assessment of the differentiation status of ES cells by measuring their AP activity, cell-surface stage-specific antigens (SSEA-1, SSEA-4) as well as expression of TRA-1-60, TRA-1-81 antigens.

Application

Research Category
Stem Cell Research
The Embryonic Stem Cell Characterization Kit phenotypically assesses the differentiation status of ES cells by measuring their AP activity, cell-surface stage-specific antigens (SSEA-1, SSEA-4) as well as expression of TRA-1-60, TRA-1-81 antigens.

Preparation Note

When stored at 2-8º C, the kit components are stable up to the expiration date. Do not freeze or expose to elevated temperatures. Discard any remaining reagents after the expiration date.

Other Notes

Fast Red Violet solution (0.8g/L stock) (Part No. 90239). Two 15mL bottles.

Napthol AS-BI phosphate solution (2mg/mL) in a buffer, pH 8.5 (Part No. CS235583). Two bottles.

MS X SSEA-1, IgM, clone MC-480 (Part No. 90230). One vial containing 100μl of 1mg/mL monoclonal antibody.

MS X SSEA-4, IgG, clone MC-813-70 (Part No. 90231). One vial containing 100μl of 1mg/mL monoclonal antibody.

MS X TRA-1-60, IgM, clone TRA-1-60 (Part No. 90232). One vial containing 100μl of 1mg/mL monoclonal antibody

MS X TRA-1-81, IgM, clone TRA-1-81 (Part No: 90233). One vial containing 100μl of 1mg/mL monoclonal antibody.

Legal Information

CHEMICON is a registered trademark of Merck KGaA, Darmstadt, Germany
ESGRO is a registered trademark of Merck KGaA, Darmstadt, Germany

Disclaimer

Unless otherwise stated in our catalog or other company documentation accompanying the product(s), our products are intended for research use only and are not to be used for any other purpose, which includes but is not limited to, unauthorized commercial uses, in vitro diagnostic uses, ex vivo or in vivo therapeutic uses or any type of consumption or application to humans or animals.

pictograms

Health hazardExclamation mark

signalword

Warning

Hazard Classifications

Carc. 2 - Eye Irrit. 2 - Skin Irrit. 2

Classe de stockage

10 - Combustible liquids


Certificats d'analyse (COA)

Recherchez un Certificats d'analyse (COA) en saisissant le numéro de lot du produit. Les numéros de lot figurent sur l'étiquette du produit après les mots "Lot" ou "Batch".

Déjà en possession de ce produit ?

Retrouvez la documentation relative aux produits que vous avez récemment achetés dans la Bibliothèque de documents.

Consulter la Bibliothèque de documents

Ji-Hye Jung et al.
Stem cells and development, 25(13), 1006-1019 (2016-05-18)
On the basis of our previous report verifying that chemokine (C-X-C motif) receptor 2 (CXCR2) ligands in human placenta-derived cell conditioned medium (hPCCM) support human pluripotent stem cell (hPSC) propagation without exogenous basic fibroblast growth factor (bFGF), this study was
Sumitha Prameela Bharathan et al.
Biology open, 6(1), 100-108 (2017-01-17)
Low efficiency of somatic cell reprogramming and heterogeneity among human induced pluripotent stem cells (hiPSCs) demand extensive characterization of isolated clones before their use in downstream applications. By monitoring human fibroblasts undergoing reprogramming for their morphological changes and expression of
Aba Somers et al.
Stem cells (Dayton, Ohio), 28(10), 1728-1740 (2010-08-18)
The development of methods to achieve efficient reprogramming of human cells while avoiding the permanent presence of reprogramming transgenes represents a critical step toward the use of induced pluripotent stem cells (iPSC) for clinical purposes, such as disease modeling or
Anthony Zulli et al.
Experimental physiology, 93(5), 564-569 (2008-01-15)
Angiotensin-converting enzyme 2 (ACE2) is a novel enzyme with possible implications in the treatment of blood pressure disorders. Recent evidence suggests that an upregulation of ACE2 can be stimulated by all-trans retinoic acid (at-RA); however, at-RA also affects regulation of
Zhiqing Hu et al.
Molecular therapy. Nucleic acids, 17, 198-209 (2019-07-02)
Given that the cDNA of F8 is too large to be packaged into adeno-associated virus (AAV) capsids, gene transfer of some versions of B-domain-deleted F8 (BDD-F8) for hemophilia A (HA) treatment has been attempted with promising results. Here, we describe

Contenu apparenté

As the focus of stem cell research undergoes a transition from animal to human models, researchers are in critical need of validated products to support the isolation, maintenance, differentiation, and characterization of human stem cells. While many reagents designed for rodent systems can be applied to human stem cell studies, they are not truly optimized for robust human stem cell culture or analysis. This is why human stem cell researchers have always trusted EMD Millipore, the first provider of commercially available human embryonic stem cells and human neural stem cell lines, to accelerate their research. All of our human stem cell systems are extensively tested in defined media culture, and differentiated progeny are comprehensively characterized with highly validated antibodies and detection reagents.

Numéro d'article de commerce international

RéférenceGTIN
SCR00104053252266454

Notre équipe de scientifiques dispose d'une expérience dans tous les secteurs de la recherche, notamment en sciences de la vie, science des matériaux, synthèse chimique, chromatographie, analyse et dans de nombreux autres domaines..

Contacter notre Service technique