Millipore Sigma Vibrant Logo
 

Agonist


1592 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (1,569)
  • (9)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • PPAR gamma partial agonist, KR-62776, inhibits adipocyte differentiation via activation of ERK. 19347570

    Indenone KR-62776 acts as an agonist of PPAR gamma without inducing obesity in animal models and cells. X-ray crystallography reveals that the indenone occupies the binding pocket in a different manner than rosiglitazone. 2-Dimensional gel-electrophoresis showed that the expression of 42 proteins was altered more than 2.0-fold between KR-62776- or rosiglitazone-treated adipocyte cells and control cells. Rosiglitazone down-regulated the expression of ERK1/2 and suppressed the phosphorylation of ERK1/2 in these cells. However, the expression of ERK1/2 was up-regulated in KR-62776-treated cells. Phosphorylated ERK1/2, activated by indenone, affects the localization of PPAR gamma, suggesting a mechanism for indenone-inhibition of adipogenesis in 3T3-L1 preadipocyte cells. The preadipocyte cells are treated with ERK1/2 inhibitor PD98059, a large amount of the cells are converted to adipocyte cells. These results support the conclusion that the localization of PPAR gamma is one of the key factors explaining the biological responses of the ligands.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB3632
    Nombre del producto:
    Anti-PPAR gamma 1 and 2 Antibody, phospho-specific (Ser112)
  • Phosphatidylinositol 4,5-bisphosphate (PIP2)-enhanced G protein-coupled receptor kinase (GRK) activity. Location, structure, and regulation of the PIP2 binding site disti ... 8798768

    The G protein-coupled receptor kinases (GRKs) phosphorylate agonist occupied G protein-coupled receptors and play an important role in mediating receptor desensitization. The localization of these enzymes to their membrane incorporated substrates is required for their efficient function and appears to be a highly regulated process. In this study we demonstrate that phosphatidylinositol 4, 5-bisphosphate (PIP2) enhances GRK5-mediated beta-adrenergic receptor (betaAR) phosphorylation by directly interacting with this enzyme and facilitating its membrane association. GRK5-mediated phosphorylation of a soluble peptide substrate is unaffected by PIP2, suggesting that the PIP2-enhanced receptor kinase activity arises as a consequence of this membrane localization. The lipid binding site of GRK5 exhibits a high degree of specificity and appears to reside in the amino terminus of this enzyme. Mutation of six basic residues at positions 22, 23, 24, 26, 28, and 29 of GRK5 ablates the ability of this kinase to bind PIP2. This region of the GRK5, which has a similar distribution of basic amino acids to the PIP2 binding site of gelsolin, is highly conserved between members of the GRK4 subfamily (GRK4, GRK5, and GRK6). Indeed, all the members of the GRK4 subfamily exhibit PIP2-dependent receptor kinase activity. We have shown previously that the membrane association of betaARK (beta-adrenergic receptor kinase) (GRK2) is mediated, in vitro, by the simultaneous binding of PIP2 and the betagamma subunits of heterotrimeric G proteins to the carboxyl-terminal pleckstrin homology domain of this enzyme (Pitcher, J. A., Touhara, K., Payne, E. S., and Lefkowitz, R. J. (1995) J. Biol. Chem. 270, 11707-11710). Thus, five members of the GRK family bind PIP2, betaARK (GRK2), betaARK2 (GRK3), GRK4, GRK5, and GRK6. However, the structure, location, and regulation of the PIP2 binding site distinguishes the betaARK (GRK2 and GRK3) and GRK4 (GRK4, GRK5, and GRK6) subfamilies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-466
    Nombre del producto:
    Anti-GRK 4-6 Antibody, clone A16/17
  • Mechanism of regulation of casein kinase I activity by group I metabotropic glutamate receptors. 12223474

    Previously, we reported that (S)-3,5-dihydroxypenylglycine (DHPG), an agonist for group I metabotropic glutamate receptors (mGluRs), stimulates CK1 and Cdk5 kinase activities in neostriatal neurons, leading to enhanced phosphorylation, respectively, of Ser-137 and Thr-75 of DARPP-32 (dopamine and cAMP-regulated phosphoprotein, 32 kDa). We have now investigated the signaling pathway that leads from mGluRs to casein kinase 1 (CK1) activation. In mouse neostriatal slices, the effect of DHPG on phosphorylation of Ser-137 or Thr-75 of DARPP-32 was blocked by the phospholipase Cbeta inhibitor, the Ca(2+) chelator 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid (BAPTA/AM), and the calcineurin inhibitor cyclosporin A. In neuroblastoma N2a cells, the effect of DHPG on the activity of transfected HA-tagged CK1(epsilon) was blocked by BAPTA/AM and cyclosporin A. In neostriatal slices, the effect of DHPG on Cdk5 activity was also abolished by BAPTA/AM and cyclosporin A, presumably through blocking activation of CK1. Metabolic labeling studies and phosphopeptide mapping revealed that a set of C-terminal sites in HA-CK1epsilon were transiently dephosphorylated in N2a cells upon treatment with DHPG, and this was blocked by cyclosporin A. A mutant CK1epsilon with a nonphosphorylatable C-terminal domain was not activated by DHPG. Together, these studies suggest that DHPG activates CK1(epsilon) via Ca(2+)-dependent stimulation of calcineurin and subsequent dephosphorylation of inhibitory C-terminal autophosphorylation sites.
    Tipo de documento:
    Referencia
    Referencia del producto:
    14-405
  • Capsaicin pre-treatment provides neurovascular protection against neonatal hypoxic-ischemic brain injury in rats. 21725760

    Capsaicin, a transient receptor potential vanilloid 1 (TRPV1) agonist, has recently been shown to provide neuroprotection against brain injury in experimental adult models of cerebral ischemia. Accordingly, in this study, we investigated the way in which capsaicin-mediated TRPV1 modulation could attenuate damage in an experimental hypoxic-ischemic (HI) neonatal brain injury model. The Rice-Vannucci method was used in 10-day-old rat pups by performing unilateral carotid artery ligation followed by 2 h of hypoxia (8% O2 at 37°C). Capsaicin was administered intraperitoneally (0.2 mg/kg or 2.0 mg/kg) at 3 h pre-HI or 1 h post-HI. Post assessment included measurement of infarction volume at 24 and 72 h in addition to an assessment of the vascular dynamics of the middle cerebral artery (MCA) at 6 h post-HI. The results indicated that pre-treatment with capsaicin reduced infarction volume significantly with either low-dose or high-dose treatment. Pre-treatment also improved myogenic tone and decreased apoptotic changes in the distal MCA. We concluded that capsaicin pre-treatment may provide neurovascular protection against neonatal HI.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • The VPAC2 agonist peptide histidine isoleucine (PHI) up-regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1G93A) b ... 21730107

    Degeneration of corpus callosum appears in patients with amyotrophic lateral sclerosis (ALS) before clinical signs of upper motor neuron death. Considering the ALS-associated impairment of astrocytic glutamate uptake, we have characterized the expression and activity of the glutamate transporter isoforms GLT-1a and GLT-1b in the corpus callosum of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A)). We have also studied the effect of peptide histidine isoleucine (PHI), a vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 2 (VPAC(2)) agonist on glutamate transporters both in vivo and in callosal astrocytes. Before the onset of motor symptoms, the expression of both transporter isoforms was correlated with a constitutive activity of caspase-3. This enzyme participates in the down-regulation of GLT-1 in ALS, and here we demonstrated its involvement in the selective degradation of GLT-1a in the white matter. A single stereotactic injection of PHI into the corpus callosum of symptomatic rats decreased caspase-3 activity and promoted GLT-1a expression and uptake activity. Together, with evidence for a reduced expression of prepro-VIP/PHI mRNA in the corpus callosum of transgenic animals, these data shed light on the modulatory role of the VIP/PHI system on the glutamatergic transmission in ALS.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1783
    Nombre del producto:
    Anti-Glutamate Transporter Antibody, Glial
  • BID binds to replication protein A and stimulates ATR function following replicative stress. 21859891

    Proapoptotic BH3-interacting death domain agonist (BID) regulates apoptosis and the DNA damage response. Following replicative stress, BID associates with proteins of the DNA damage sensor complex, including replication protein A (RPA), ataxia telangiectasia and Rad3 related (ATR), and ATR-interacting protein (ATRIP), and facilitates an efficient DNA damage response. We have found that BID stimulates the association of RPA with components of the DNA damage sensor complex through interaction with the basic cleft of the N-terminal domain of the RPA70 subunit. Disruption of the BID-RPA interaction impairs the association of ATR-ATRIP with chromatin as well as ATR function, as measured by CHK1 activation and recovery of DNA replication following hydroxyurea (HU). We further demonstrate that the association of BID with RPA stimulates the association of ATR-ATRIP to the DNA damage sensor complex. We propose a model in which BID associates with RPA and stimulates the recruitment and/or stabilization of ATR-ATRIP to the DNA damage sensor complex.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-928
    Nombre del producto:
    Anti-Histone H3 Antibody, CT, pan, clone A3S, rabbit monoclonal
  • Cognitive enhancement with rosiglitazone links the hippocampal PPARγ and ERK MAPK signaling pathways. 23175826

    We previously reported that the peroxisome proliferator-activated receptor γ (PPARγ) agonist rosiglitazone (RSG) improved hippocampus-dependent cognition in the Alzheimer's disease (AD) mouse model, Tg2576. RSG had no effect on wild-type littermate cognitive performance. Since extracellular signal-regulated protein kinase mitogen-activated protein kinase (ERK MAPK) is required for many forms of learning and memory that are affected in AD, and since both PPARγ and ERK MAPK are key mediators of insulin signaling, the current study tested the hypothesis that RSG-mediated cognitive improvement induces a hippocampal PPARγ pattern of gene and protein expression that converges with the ERK MAPK signaling axis in Tg2576 AD mice. In the hippocampal PPARγ transcriptome, we found significant overlap between peroxisome proliferator response element-containing PPARγ target genes and ERK-regulated, cAMP response element-containing target genes. Within the Tg2576 dentate gyrus proteome, RSG induced proteins with structural, energy, biosynthesis and plasticity functions. Several of these proteins are known to be important for cognitive function and are also regulated by ERK MAPK. In addition, we found the RSG-mediated augmentation of PPARγ and ERK2 activity during Tg2576 cognitive enhancement was reversed when hippocampal PPARγ was pharmacologically antagonized, revealing a coordinate relationship between PPARγ transcriptional competency and phosphorylated ERK that is reciprocally affected in response to chronic activation, compared with acute inhibition, of PPARγ. We conclude that the hippocampal transcriptome and proteome induced by cognitive enhancement with RSG harnesses a dysregulated ERK MAPK signal transduction pathway to overcome AD-like cognitive deficits in Tg2576 mice. Thus, PPARγ represents a signaling system that is not crucial for normal cognition yet can intercede to restore neural networks compromised by AD.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Proapoptotic Bid mediates the Atr-directed DNA damage response to replicative stress. 21113148

    Proapoptotic BH3 interacting domain death agonist (Bid), a BH3-only Bcl-2 family member, is situated at the interface between the DNA damage response and apoptosis, with roles in death receptor-induced apoptosis as well as cell cycle checkpoints following DNA damage.(1, 2, 3) In this study, we demonstrate that Bid functions at the level of the sensor complex in the Atm and Rad3-related (Atr)-directed DNA damage response. Bid is found with replication protein A (RPA) in nuclear foci and associates with the Atr/Atr-interacting protein (Atrip)/RPA complex following replicative stress. Furthermore, Bid-deficient cells show an impaired response to replicative stress manifest by reduced accumulation of Atr and Atrip on chromatin and at DNA damage foci, reduced recovery of DNA synthesis following replicative stress, and decreased checkpoint kinase 1 activation and RPA phosphorylation. These results establish a direct role for the BH3-only Bcl-2 family member, Bid, acting at the level of the damage sensor complex to amplify the Atr-directed cellular response to replicative DNA damage.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-928
    Nombre del producto:
    Anti-Histone H3 Antibody, CT, pan, clone A3S, rabbit monoclonal
  • BML-111 alleviates acute lung injury through regulating the expression of lncRNA MALAT1. 29704485

    BML-111 is a lipoxin receptor agonist that plays a vital role on inflammation. MALAT1 is reported to mediate lung injury. ALI rat model was established using the method of venous cannula. Pulmonary microvascular endothelial cells (PMVEC) of rats were isolated using immunomagnetic separation method. Hematoxylin-eosin (HE) staining was performed to observe the lung injury degree. Real-time PCR and western blot were performed to detect the genes expression. ELIAS was used to determine the level of TNF-α and IL-6. RNA pull-down and RIP were carried out to affirm the relationship between MALAT1 and TLR4. The lung injury score and lung wet/dry weight ratio was significantly increased in ALI rats, while BML-111 treatment significantly decreased it, the HE staining directly revealed the lung injury. The expression of MALAT1 was decreased, while TLR4 was increased in ALI rats, BML-111 stimulation significantly reversed it. MALAT1 targets TLR4 to regulate its expression. TLR4 regulated the inflammation and cell apoptosis of PMVEC via NF-κB and p38 MAPK signaling pathway. The down-regulated MALAT1 mediates the mechanism of ALI by regulating of NF-κB and p38 MAPK signaling pathways via TLR4, while BML-111 stimulation significantly alleviated the ALI by regulating the expression of MALAT1.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-700
    Nombre del producto:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Nociceptin/orphanin FQ peptide in hypothalamic neurones associated with the control of feeding behaviour. 20025627

    Nociceptin/orphanin FQ (N/OFQ), an endogenous peptide agonist of the opioid N/OFQ receptor, has been implicated in the regulation of energy balance. In the present study, we have used immunohistochemistry to investigate the cellular localisation and colocalisation of N/OFQ-immunoreactive cell bodies in hypothalamic regions containing neurones producing orexigenic or anorexigenic transmitters. In colchicine-treated rats, N/OFQ immunoreactivity was demonstrated in many cell bodies of the arcuate nucleus (Arc), paraventricular nucleus (PVN) and lateral hypothalamic area (LHA). Double-labelling revealed that N/OFQ was present in some neurones located in the ventrolateral part of the Arc producing pro-opiomelanocortin, as shown by the presence of the anorexigenic peptides alpha-melanocyte-stimulating hormone (alpha-MSH) and cocaine- and amphetamine-regulated transcript and, occasionally, in single neurones of the ventrolateral Arc producing orexigenic agouti-related peptide, but not neuropeptide Y. N/OFQ immunoreactivity was also demonstrated in a few tyrosine hydroxylase- or dynorphin (DYN)-containing neurones in the dorsomedial part of the Arc. In the parvocellular PVN, N/OFQ was demonstrated in some thyrotrophin-releasing hormone- or DYN-, but not corticotrophin-releasing hormone-containing neurones. Most N/OFQ-immunoreactive neurones in the LHA contained orexin- and DYN, but not melanin-concentrating hormone. The results obtained, demonstrating the presence of N/OFQ in some alpha-MSH- and in many orexin-containing neurones, suggest a functional relationship between these neuropeptides and N/OFQ in the control of feeding behaviour and body weight.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5087
    Nombre del producto:
    Anti-Melanocyte Stimulating Hormone α Antibody