Millipore Sigma Vibrant Logo
 

Peroxiredoxin


68 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (67)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (34)
  • (33)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Differences in the protein expression levels of Trx2 and Prx3 in the hippocampal CA1 region between adult and aged gerbils following transient global cerebral ischemia. 25955690

    The thioredoxin (Trx) and peroxiredoxin (Prx) redox system is associated with neuronal damage and neuroprotective effects via the regulation of oxidative stress in brain ischemia. In the present study, ischemia-induced changes in the protein expression levels of Trx2 and Prx3 in the stratum pyramidale (SP) of the hippocampal CA1 region were investigated in adult and aged gerbils, subjected to 5 min of transient global cerebral ischemia, using immunohistochemistry and western blot analysis. In the adult ischemia-group, minimal Trx2 immunoreactivity was detected in the SP 2 days after ischemia-reperfusion. In the aged animals, the Trx2 immunoreactivity in the sham-group was marginally lower compared with that in the adult sham-group. In the aged ischemia-group, Trx2 immunoreactivity in the SP was significantly higher 1, 2 and 4 days post-ischemia, compared with that in the adult ischemia-group and, in the 5 days post-ischemia group, Trx2 immunoreactivity was significantly decreased in the SP. Prx3 immunoreactivity in the SP of the adult ischemia-group was significantly decreased from 4 days after ischemia-reperfusion. In the aged animals, Prx3 immunoreactivity in the sham-group was also marginally lower compared with that in the adult sham-group. Prx3 immunoreactivity in the aged ischemia-group was also significantly higher 1, 2 and 4 days post-ischemia, compared with the adult ischemia-group; however, the Prx3 immunoreactivity was significantly decreased 5 days post-ischemia. The western blot analyses revealed that the pattern of changes in the protein levels of Trx2 and Prx3 in the adult and aged hippocampal CA1 region following ischemic damage were similar to the results obtained in the immunohistochemical data. These findings indicated that cerebral ischemia lead to different protein expression levels of Trx2 and Prx3 in the hippocampal CA1 region between adult and aged gerbils, and these differences may be associated with more delayed neuronal death in the aged gerbil hippocampus following transient global cerebral ischemia.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • Mitochondrial peroxiredoxin 3 regulates sensory cell survival in the cochlea. 23626763

    This study delineates the role of peroxiredoxin 3 (Prx3) in hair cell death induced by several etiologies of acquired hearing loss (noise trauma, aminoglycoside treatment, age). In vivo, Prx3 transiently increased in mouse cochlear hair cells after traumatic noise exposure, kanamycin treatment, or with progressing age before any cell loss occurred; when Prx3 declined, hair cell loss began. Maintenance of high Prx3 levels via treatment with the radical scavenger 2,3-dihydroxybenzoate prevented kanamycin-induced hair cell death. Conversely, reducing Prx3 levels with Prx3 siRNA increased the severity of noise-induced trauma. In mouse organ of Corti explants, reactive oxygen species and levels of Prx3 mRNA and protein increased concomitantly at early times of drug challenge. When Prx3 levels declined after prolonged treatment, hair cells began to die. The radical scavenger p-phenylenediamine maintained Prx3 levels and attenuated gentamicin-induced hair cell death. Our results suggest that Prx3 is up-regulated in response to oxidative stress and that maintenance of Prx3 levels in hair cells is a critical factor in their susceptibility to acquired hearing loss.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ABS16
    Nombre del producto:
    Anti-GAPDH Antibody
  • The antioxidant protein peroxiredoxin 4 is epigenetically down regulated in acute promyelocytic leukemia. 21283726

    The antioxidant peroxiredoxin (PRDX) protein family comprises 6 members, which are implicated in a variety of cellular responses, including growth factor signal transduction. PRDX4 resides in the endoplasmic reticulum (ER), where it locally controls oxidative stress by reducing H(2)O(2) levels. We recently provided evidence for a regulatory function of PRDX4 in signal transduction from a myeloid growth factor receptor, the granulocyte colony-stimulating factor receptor (G-CSFR). Upon activation, the ligand-induced G-CSFR undergoes endocytosis and routes via the early endosomes where it physically interacts with ER-resident PRDX4. PRDX4 negatively regulates G-CSFR mediated signaling. Here, we investigated whether PRDX4 is affected in acute myeloid leukemia (AML); genomic alterations and expression levels of PRDX4 were investigated. We show that genomic abnormalities involving PRDX4 are rare in AML. However, we find a strong reduction in PRDX4 expression levels in acute promyelocytic leukemia (APL) compared to normal promyelocytes and different molecular subtypes of AML. Subsequently, the possible role of DNA methylation and histone modifications in silencing of PRDX4 in APLs was investigated. We show that the reduced expression is not due to methylation of the CpG island in the promoter region of PRDX4 but correlates with increased trimethylation of histone 3 lysine residue 27 (H3K27me3) and lysine residue 4 (H3K4me3) at the transcriptional start site (TSS) of PRDX4, indicative of a bivalent histone code involved in transcriptional silencing. These findings suggest that the control of G-CSF responses by the antioxidant protein PRDX4 may be perturbed in APL.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-449
    Nombre del producto:
    Anti-trimethyl-Histone H3 (Lys27) Antibody
  • Peroxiredoxin distribution in the mouse brain with emphasis on neuronal populations affected in neurodegenerative disorders. 21674491

    Redox changes are observed in neurodegenerative diseases, ranging from increased levels of reactive oxygen/nitrogen species and disturbance of antioxidant systems, to nitro-oxidative damage. By reducing hydrogen peroxide, peroxynitrite, and organic hydroperoxides, peroxiredoxins (Prdxs) represent a major potential protective barrier against nitro-oxidative insults in the brain. While recent works have investigated the putative role of Prdxs in neurodegenerative disorders, less is known about their expression in the healthy brain. Here we used immunohistochemistry to map basal expression of Prdxs throughout C57BL/6 mouse brain. We first confirmed the neuronal localization of Prdx2-5 and the glial expression of Prdx1, Prdx4, and Prdx6. Then we performed an in-depth analysis of neuronal Prdx distribution in the brain. Our results show that Prdx2-5 are widely detected in the different neuronal populations, and especially well expressed in the olfactory bulb, in the cerebral cortex, in pons nuclei, in the red nucleus, in all cranial nerve nuclei, in the cerebellum, and in motor neurons of the spinal cord. In contrast, Prdx expression is very low in the dopaminergic neurons of substantia nigra pars compacta and in the CA1/2 pyramidal cells of hippocampus. This low basal expression may contribute to the vulnerability of these neurons to nitro-oxidative attacks occurring in Parkinson's disease and Alzheimer's disease. In addition, we found that Prdx expression levels are unevenly distributed among neurons of a determined region and that distinct regional patterns of expression are observed between isoforms, reinforcing the hypothesis of the nonredundant function of Prdxs.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-609
  • Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. 11390385

    Six distinct peroxiredoxin (Prx) proteins (Prx I-VI) from distinct genes have been identified in mammalian tissues. Prxs are members of a group of peroxidases that have conserved reactive cysteine residue(s) in the active site(s). An immediate physiological electron donor for the peroxidase catalysis for five Prx proteins (Prx I-V) has been identified as thioredoxin (Trx), but that for Prx VI (1-Cys Prx) is still unclear. To identify an immediate electron donor and a binding protein for Prx VI, we performed a Prx VI protein overlay assay. A 20-kDa binding protein was identified by the Prx VI protein overlay assay with flow-through fractions from a High-Q column with rat lung crude extracts. Using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF) and MS-Fit, we identified the 20-kDa Prx VI-binding protein as a cyclophilin A (CyP-A). The binding of recombinant human CyP-A (hCyP-A) to Prx VI was confirmed by using the hCyP-A protein overlay assay and Western immunoblot analysis with hCyP-A-specific antibodies. hCyP-A enhanced the antioxidant activity of Prx VI, as well as the other known mammalian Prx isotypes. hCyP-A supported antioxidant activity of Prx II and Prx VI both against thiol (dithiothreitol)-containing metal-catalyzed oxidation (MCO) systems and ascorbate-containing MCO systems. Prx II was reduced by hCyP-A without help from any other reductant, and the reduction was cyclosporin A-independent. These results strongly suggest that CyP-A not only binds to Prx proteins but also supports its peroxidase activity as an immediate electron donor. In addition, Cys(115) and Cys(161) of hCyP-A were found to be involved in the activation and the reduction of Prx.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-313
  • Peroxiredoxin 6 differentially regulates acute and chronic cigarette smoke–mediated lung inflammatory response and injury. 20939758

    Peroxiredoxin 6 (Prdx6) exerts its protective role through peroxidase activity against H₂O₂ and phospholipid hydroperoxides. We hypothesized that targeted disruption of Prdx6 would lead to enhanced susceptibility to cigarette smoke (CS)-mediated lung inflammation and/or emphysema in mouse lung. Prdx6 null (Prdx6⁻/⁻mice exposed to acute CS showed no significant increase of inflammatory cell influx or any alterations in lung levels of proinflammatory cytokines compared to wild-type (WT) mice. Lung levels of antioxidant enzymes were significantly increased in acute CS-exposed Prdx6⁻/⁻ compared to WT mice. Overexpressing (Prdx6⁻/⁻) mice exposed to acute CS showed significant decrease in lung antioxidant enzymes associated with increased inflammatory response compared to CS-exposed WT mice or air-exposed Prdx6⁻/⁻ mice. However, chronic 6 months of CS exposure resulted in increased lung inflammatory response, mean linear intercept (Lm), and alteration in lung mechanical properties in Prdx6⁻/⁻ when compared to WT mice exposed to CS. These data show that targeted disruption of Prdx6 does not lead to increased lung inflammatory response but is associated with increased antioxidants, suggesting a critical role of lung Prdx6 and several compensatory mechanisms during acute CS-induced adaptive response, whereas this protection is lost in chronic CS exposure leading to emphysema.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-984
    Nombre del producto:
    Anti-Mn-SOD Antibody
  • Cytosolic peroxiredoxin attenuates the activation of Jnk and p38 but potentiates that of Erk in Hela cells stimulated with tumor necrosis factor-alpha. 14597634

    Tumor necrosis factor-alpha (TNF-alpha) induces the activation of all three types of mitogen-activated protein kinase (MAPK): c-Jun NH(2)-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK). This cytokine also induces the production of several types of reactive oxygen species, including H(2)O(2). With the use both of HeLa cells expressing wild-type or dominant negative forms of the cytosolic peroxidase peroxiredoxin II and of mouse embryonic fibroblasts deficient in this protein, we evaluated the roles of H(2)O(2) in the activation of MAPKs by TNF-alpha. In vitro kinase assays as well as immunoblot analysis with antibodies specific for activated MAPKs indicated that H(2)O(2) produced in response to TNF-alpha potentiates the activation of JNK and p38 induced by this cytokine but inhibits that of ERK. Our results also suggest that cytosolic peroxiredoxins are important regulators of TNF signaling pathways.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Selective association of peroxiredoxin 1 with genomic DNA and COX-2 upstream promoter elements in estrogen receptor negative breast cancer cells. 20631257

    In a search for proteins differentially cross-linked to DNA by cisplatin or formaldehyde in normal breast epithelial and breast cancer cell lines, we identified peroxiredoxin 1 (PRDX1) as a protein preferentially cross-linked to DNA in estrogen receptor negative (ER-) MDA-MB-231 but not in estrogen receptor positive (ER+) MCF7 breast cancer cells. Indirect immunofluorescence microscopic analyses showed that PRDX1 was located in the cytoplasm and nucleus of normal and breast cancer cells, with nuclear PRDX1 associated with promyelocytic leukemia protein bodies. We demonstrated that PRDX1 association with the transcription factor nuclear factor-kappaB (NF-kappaB) in MDA-MB-231 but not in MCF7 cells contributed to PRDX1-selective recruitment to MDA-MB-231 genomic DNA. Furthermore, PRDX1 was associated with the cyclooxygenase (COX)-2 upstream promoter region at sites occupied by NF-kappaB in ER- but not in ER+ breast cancer cells. PRDX1 knockdown attenuated COX-2 expression by reducing NF-kappaB occupancy at its upstream promoter element in MDA-MB-231 but not in MCF7 cells. A phosphorylated form of PRDX1 was only present in ER- breast cancer cells. Because PRDX1 phosphorylation is known to inhibit its peroxidase activity and to promote PRDX1 oligomerization, we propose that PRDX1 acts as a chaperone to enhance the transactivation potential of NF-kappaB in ER- breast cancer cells.
    Tipo de documento:
    Referencia
    Referencia del producto:
    07-609
  • Thioredoxin reductase deficiency potentiates oxidative stress, mitochondrial dysfunction and cell death in dopaminergic cells. 23226354

    Mitochondria are considered major generators of cellular reactive oxygen species (ROS) which are implicated in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). We have recently shown that isolated mitochondria consume hydrogen peroxide (H₂O₂) in a substrate- and respiration-dependent manner predominantly via the thioredoxin/peroxiredoxin (Trx/Prx) system. The goal of this study was to determine the role of Trx/Prx system in dopaminergic cell death. We asked if pharmacological and lentiviral inhibition of the Trx/Prx system sensitized dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂ levels and death in response to toxicants implicated in PD. Incubation of N27 dopaminergic cells or primary rat mesencephalic cultures with the Trx reductase (TrxR) inhibitor auranofin in the presence of sub-toxic concentrations of parkinsonian toxicants paraquat; PQ or 6-hydroxydopamine; 6OHDA (for N27 cells) resulted in a synergistic increase in H₂O₂ levels and subsequent cell death. shRNA targeting the mitochondrial thioredoxin reductase (TrxR2) in N27 cells confirmed the effects of pharmacological inhibition. A synergistic decrease in maximal and reserve respiratory capacity was observed in auranofin treated cells and TrxR2 deficient cells following incubation with PQ or 6OHDA. Additionally, TrxR2 deficient cells showed decreased basal mitochondrial oxygen consumption rates. These data demonstrate that inhibition of the mitochondrial Trx/Prx system sensitizes dopaminergic cells to mitochondrial dysfunction, increased steady-state H₂O₂, and cell death. Therefore, in addition to their role in the production of cellular H₂O₂ the mitochondrial Trx/Prx system serve as a major sink for cellular H₂O₂ and its disruption may contribute to dopaminergic pathology associated with PD.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SCC048
    Nombre del producto:
    N27 Rat Dopaminergic Neural Cell Line
  • Aggressive mammary carcinoma progression in Nrf2 knockout mice treated with 7,12-dimethylbenz[a]anthracene. 20932318

    Activation of nuclear factor erythroid 2-related factor (Nrf2), which belongs to the basic leucine zipper transcription factor family, is a strategy for cancer chemopreventive phytochemicals. It is an important regulator of genes induced by oxidative stress, such as glutathione S-transferases, heme oxygenase-1 and peroxiredoxin 1, by activating the antioxidant response element (ARE). We hypothesized that (1) the citrus coumarin auraptene may suppress premalignant mammary lesions via activation of Nrf2/ARE, and (2) that Nrf2 knockout (KO) mice would be more susceptible to mammary carcinogenesis.Premalignant lesions and mammary carcinomas were induced by medroxyprogesterone acetate and 7,12-dimethylbenz[a]anthracene treatment. The 10-week pre-malignant study was performed in which 8 groups of 10 each female wild-type (WT) and KO mice were fed either control diet or diets containing auraptene (500 ppm). A carcinogenesis study was also conducted in KO vs. WT mice (n = 30-34). Comparisons between groups were evaluated using ANOVA and Kaplan-Meier Survival statistics, and the Mann-Whitney U-test.All mice treated with carcinogen exhibited premalignant lesions but there were no differences by genotype or diet. In the KO mice, there was a dramatic increase in mammary carcinoma growth rate, size, and weight. Although there was no difference in overall survival, the KO mice had significantly lower mammary tumor-free survival. Also, in the KO mammary carcinomas, the active forms of NF-κB and β-catenin were increased ~2-fold whereas no differences in oxidized proteins were observed. Many other tumors were observed, including lymphomas. Interestingly, the incidences of lung adenomas in the KO mice were significantly higher than in the WT mice.We report, for the first time, that there was no apparent difference in the formation of premalignant lesions, but rather, the KO mice exhibited rapid, aggressive mammary carcinoma progression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo