Millipore Sigma Vibrant Logo
 

acide


6070 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (3,245)
  • (1,125)
  • (96)
  • (77)
  • (55)
  • Mostrar más
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Impaired olfactory function in mice with allergic rhinitis. 20346605

    It has been reported that olfactory function is impaired in patients with allergic rhinitis. However, the mechanism of olfactory dysfunction in allergic rhinitis remains poorly understood. Because of difficulties in obtaining and analyzing human olfactory mucosa due to both technical and ethical issues, an animal model needs to be established to clarify the mechanism of olfactory dysfunction in allergic rhinitis. The purpose of this study was to study olfactory function and changes in olfactory mucosa using allergic rhinitis mice.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB318
    Nombre del producto:
    Anti-Tyrosine Hydroxylase Antibody, clone LNC1
  • Selective reduction of JAK2V617F-dependent cell growth by siRNA/shRNA and its reversal by cytokines. 19589925

    The JAK(V617F) mutation is responsible for the majority of breakpoint cluster region (BCR)/Abelson (ABL)-negative myeloproliferative disorders. Ongoing clinical trials of Janus kinase 2 (JAK2) inhibitors in myeloproliferative disorder patients use small molecules targeting both wild-type and mutated JAK2. To selectively target malignant cells, we developed JAK2(V617F)-specific small interfering RNAs or short hairpin RNAs. Expression of these RNAs in cell lines or CD34(+) cells from patients reduced JAK2(V617F)-driven autonomous cell proliferation. Mechanisms of inhibition involved selective JAK2(V617F) protein down-regulation, and consequently, decrease in signal transducer and activator of transcription 5 phosphorylation, cell-cycle progression, and cell survival. However, the addition of high concentrations of cytokines to cell lines or erythropoietin to patient cells greatly reduced growth inhibition. Similarly, the efficacy of a JAK2 small molecule inhibitor on cell line and patient cell proliferation dose dependently decreased with the addition of cytokines. Our results demonstrate that it is possible to specifically target JAK2(V617F) by RNA interference (RNAi) strategies. In addition, cytokines partially reverse the inhibition induced by both RNAi and small molecule approaches. This strongly suggests that patient cytokine levels in current JAK2 inhibitor clinical trials modulate the outcome of these therapies.
    Tipo de documento:
    Referencia
    Referencia del producto:
    05-321
    Nombre del producto:
    Anti-Phosphotyrosine Antibody, clone 4G10®
  • Role of helicase-like transcription factor (hltf) in the G2/m transition and apoptosis in brain. 23826137

    HLTF participates in transcription, chromatin remodeling, DNA damage repair, and tumor suppression. Aside from being expressed in mouse brain during embryonic and postnatal development, little is known about Hltf's functional importance. Splice variant quantification of wild-type neonatal (6-8 hour postpartum) brain gave a ratio of 5:1 for Hltf isoform 1 (exons 1-25) to isoform 2 (exons 1-21 with exon 21 extended via a partial intron retention event). Western analysis showed a close correlation between mRNA and protein expression. Complete loss of Hltf caused encephalomalacia with increased apoptosis, and reduced viability. Sixty-four percent of Hltf null mice died, 48% within 12-24 hours of birth. An RNA-Seq snapshot of the neonatal brain transcriptome showed 341 of 20,000 transcripts were altered (p less than 0.05) - 95 up regulated and 246 down regulated. MetaCore™ enrichment pathway analysis revealed Hltf regulates cell cycle, cell adhesion, and TGF-beta receptor signaling. Hltf's most important role is in the G2/M transition of the cell cycle (p  =  4.672e-7) with an emphasis on transcript availability of major components in chromosome cohesion and condensation. Hltf null brains have reduced transcript levels for Rad21/Scc1, histone H3.3, Cap-E/Smc2, Cap-G/G2, and Aurora B kinase. The loss of Hltf in its yeast Rad5-like role in DNA damage repair is accompanied by down regulation of Cflar, a critical inhibitor of TNFRSF6-mediated apoptosis, and increased (pless than 0.0001) active caspase-3, an indicator of intrinsic triggering of apoptosis in null brains. Hltf also regulates Smad7/Bambi/Tgf-beta/Bmp5/Wnt10b signaling in brain. ChIP confirmed Hltf binding to consensus sequences in predicted (promoter Scgb3a1 gene) and previously unidentified (P-element on chromosome 7) targets. This study is the first to provide a comprehensive view of Hltf targets in brain. Moreover, it reveals how silencing Hltf disrupts cell cycle progression, and attenuates DNA damage repair.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB377
    Nombre del producto:
    Anti-NeuN Antibody, clone A60
  • Sleep-waking discharge profiles of median preoptic and surrounding neurons in mice. 21396987

    The median preoptic nucleus (MnPO), part of the anteroventral third ventricular region, plays a key role in body fluid homeostasis and cardiovascular regulation. Recently, a cluster of neurons showing sleep-related c-fos immunoreactivity was found in the rat MnPO, and a subsequent electrophysiological study found that nearly 76% of rat MnPO neurons exhibit increased discharge during sleep. In a recent single unit recording study in mice, we found that sleep-active neurons are not localized in any specific region of the preoptic/basal forebrain (POA/BFB). However, the discharge profiles of mouse MnPO neurons across wake-sleep states remained to be determined. In this study, we therefore examined whether the mouse MnPO contains a high proportion of sleep-active neurons and constitutes a distinct cluster of sleep-promoting neurons in the median preoptic region. We recorded a total of 234 single units in the MnPO, the laterally adjacent peri-MnPO, the dorsally adjacent medial septum (MS), and the ventrally adjacent periventricular (Pe)/medial preoptic (MPO) area (Pe/MPO). We found that the MnPO contained similar proportions of sleep-active (31.9%) and waking (W)-active (33.0%) neurons, together with many waking/paradoxical sleep (W/PS)-active neurons (23.4%), whereas the Pe/MPO and MS contained a high proportion of sleep-active neurons (66.0 and 62.9%, respectively), while the peri-MnPO contained a high proportion of W-active neurons (57.1%). In the MnPO, both W-active and W/PS-active neurons were distributed throughout the nucleus, whereas sleep-active neurons were mostly located on its border. Only slowly discharging (<5 Hz) slow-wave sleep (SWS)/PS-selective neurons were found in the MnPO. During the transition from W to SWS, all of these SWS/PS-selective neurons fired not before, but after, sleep onset, with a gradual increase in discharge rate. In addition to its well-known homeostatic and cardiovascular functions, the MnPO might modulate the sleep-waking cycle by playing different roles in sleep/wake state regulation.Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5406
    Nombre del producto:
    Anti-GAD67 Antibody, clone 1G10.2
  • Human Pumilio-2 is expressed in embryonic stem cells and germ cells and interacts with DAZ (Deleted in AZoospermia) and DAZ-like proteins. 12511597

    Early in development, a part of the embryo is set aside to become the germ cell lineage that will ultimately differentiate to form sperm and eggs and transmit genetic information to the next generation. Men with deletions encompassing the Y-chromosome DAZ genes have few or no germ cells but are otherwise healthy, indicating they harbor specific defects in formation or maintenance of germ cells. A DAZ homolog, DAZL (DAZ-Like), is found in diverse organisms, including humans and is required for germ cell development in males and/or females. We identified proteins that interact with DAZ proteins to better understand their function in human germ cells. Here, we show that PUM2, a human homolog of Pumilio, a protein required to maintain germ line stem cells in Drosophila and Caenorhabditis elegans, forms a stable complex with DAZ through the same functional domain required for RNA binding, protein-protein interactions and rescue of Pumilio mutations in flies. We also show that PUM2 is expressed predominantly in human embryonic stem cells and germ cells and colocalizes with DAZ and DAZL in germ cells. These data implicate PUM2 as a component of conserved cellular machinery that may be required for germ cell development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    03-241
    Nombre del producto:
    RIPAb+™ PUM2 Antibody
  • ApoA-I secretion by rabbit intestinal mucosa cell cultures. 1762512

    Lipid and apolipoprotein (apo) A-I concentrations in different density fractions of New Zealand White (NZW) and Watanabe (WHHL) rabbit plasma were studied. Aside from the low plasma apoA-I and high density lipoprotein (HDL) cholesterol levels in WHHL rabbits, the distribution of apoA-I was also different between the two rabbits. ApoA-I was concentrated in both the HDL2 and HDL3 fractions of NZW rabbits but was found primarily in the HDL3 fraction of WHHL rabbits. ApoA-I secretion in these two rabbits was further studied in vitro by using intestinal and hepatocyte cell cultures. ApoA-I secretion was highest from cultures of the duodenum and the proximal end of the jejunum; whereas, cell cultures of the distal end of the small intestine secreted very little apoA-I into the medium. Intestinal cell cultures from WHHL rabbits secreted less, but significant amounts of, apoA-I compared to that of NZW rabbits. ApoA-I was most concentrated in the density range of 1.12-1.21 (HDL3) fraction in medium containing 10% fetal calf serum (FCS). Serum-free medium promoted apoA-I secretion by intestinal cell cultures that was mostly found in the d greater than 1.21 (lipoprotein-deficient) fraction. Hepatocytes isolated from the same rabbits by collagenase perfusion secreted little apoA-I, and it was found only in the d greater than 1.21 fraction. The addition of oleic acid into the culture medium with 10% FCS decreased the secretion of total apoA-I and HDL by intestinal cell cultures and increased the secretion of very low density lipoprotein (VLDL) and intermediate density lipoproteins (IDL).(ABSTRACT TRUNCATED AT 250 WORDS)
    Tipo de documento:
    Referencia
    Referencia del producto:
    3125
  • Mdm2 RING mutation enhances p53 transcriptional activity and p53-p300 interaction. 22666487

    The p53 transcription factor and tumor suppressor is regulated primarily by the E3 ubiquitin ligase Mdm2, which ubiquitinates p53 to target it for proteasomal degradation. Aside from its ubiquitin ligase function, Mdm2 has been believed to be capable of suppressing p53's transcriptional activity by binding with and masking the transactivation domain of p53. The ability of Mdm2 to restrain p53 activity by binding alone, without ubiquitination, was challenged by a 2007 study using a knockin mouse harboring a single cysteine-to-alanine point mutation (C462A) in Mdm2's RING domain. Mouse embryonic fibroblasts with this mutation, which abrogates Mdm2's E3 ubiquitin ligase activity without affecting its ability to bind with p53, were unable to suppress p53 activity. In this study, we utilized the Mdm2(C462A) mouse model to characterize in further detail the role of Mdm2's RING domain in the control of p53. Here, we show in vivo that the Mdm2(C462A) protein not only fails to suppress p53, but compared to the complete absence of Mdm2, Mdm2(C462A) actually enhances p53 transcriptional activity toward p53 target genes p21/CDKN1A, MDM2, BAX, NOXA, and 14-3-3σ. In addition, we found that Mdm2(C462A) facilitates the interaction between p53 and the acetyltransferase CBP/p300, and it fails to heterodimerize with its homolog and sister regulator of p53, Mdmx, suggesting that a fully intact RING domain is required for Mdm2's inhibition of the p300-p53 interaction and for its interaction with Mdmx. These findings help us to better understand the complex regulation of the Mdm2-p53 pathway and have important implications for chemotherapeutic agents targeting Mdm2, as they suggest that inhibition of Mdm2's E3 ubiquitin ligase activity may be sufficient for increasing p53 activity in vivo, without the need to block Mdm2-p53 binding.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501
    Nombre del producto:
    Anti-Actin Antibody, clone C4
  • A novel family of transmembrane proteins interacting with beta subunits of the Na,K-ATPase. 17606467

    We characterized a family consisting of four mammalian proteins of unknown function (NKAIN1, 2, 3 and 4) and a single Drosophila ortholog dNKAIN. Aside from highly conserved transmembrane domains, NKAIN proteins contain no characterized functional domains. Striking amino acid conservation in the first two transmembrane domains suggests that these proteins are likely to function within the membrane bilayer. NKAIN family members are neuronally expressed in multiple regions of the mouse brain, although their expression is not ubiquitous. We demonstrate that mouse NKAIN1 interacts with the beta1 subunit of the Na,K-ATPase, whereas Drosophila ortholog dNKAIN interacts with Nrv2.2, a Drosophila homolog of the Na,K-ATPase beta subunits. We also show that NKAIN1 can form a complex with another beta subunit-binding protein, MONaKA, when binding to the beta1 subunit of the Na,K-ATPase. Our results suggest that a complex between mammalian NKAIN1 and MONaKA is required for NKAIN function, which is carried out by a single protein, dNKAIN, in Drosophila. This hypothesis is supported by the fact that dNKAIN, but not NKAIN1, induces voltage-independent amiloride-insensitive Na(+)-specific conductance that can be blocked by lanthanum. Drosophila mutants with decreased dNKAIN expression due to a P-element insertion in the dNKAIN gene exhibit temperature-sensitive paralysis, a phenotype also caused by mutations in the Na,K-ATPase alpha subunit and several ion channels. The neuronal expression of NKAIN proteins, their membrane localization and the temperature-sensitive paralysis of NKAIN Drosophila mutants strongly suggest that this novel protein family may be critical for neuronal function.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-170
  • The role of substance P in the marginal division of the neostriatum in learning and memory is mediated through the neurokinin 1 receptor in rats. 21611833

    Substance P (SP) is a neuropeptide that plays an important role in inflammation, respiration, pain, aggression, anxiety, and learning and memory mainly through its high affinity neurokinin 1 receptor (NK1R). The marginal division (MrD) is a pan-shaped subdivision in the caudomedial margin of the neostriatum in the mammalian brain and is known to be involved in learning and memory. We studied the expression of SP, NK1R and NK1R mRNA in the rat striatum by immunohistochemistry, immunofluorescence and in situ hybridization, and found that the levels of SP, NK1R protein and NK1R mRNA were high in the cell bodies, fibers and terminals of neurons in the neostriatum, especially in the MrD. Knocking down NK1R activity in the MrD by using an antisense oligonucleotide against NK1R mRNA inhibited learning and memory in a Y-maze behavioral test. Our results show that NK1R mediates the role of SP in the MrD in learning and memory.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AP108C
    Nombre del producto:
    Goat Anti-Guinea Pig IgG Antibody, Cy3 conjugate
  • Extracellular matrix effect on RhoA signaling modulation in vascular smooth muscle cells. 20599954

    Morphological adaptations of vascular smooth muscle cells (VSMC) to the mechanically active environment in which they reside, are mediated by direct interactions with the extracellular matrix (ECM) which induces physiological changes at the intracellular level. This study aimed to analyze the effects of the ECM on RhoA-induced mechanical signaling that controls actin organization and focal adhesion formation. VSMC were transfected with RhoA constructs (wild type, dominant negative or constitutively active) and plated on different ECM proteins used as substrate (fibronectin, collagen IV, collagen I, and laminin) or poly-l-lysine as control. Morphological changes of the VSMC were detected by fluorescence confocal microscopy and total internal reflection fluorescence (TIRF) microscopy, and were independently verified using adhesion assays and Western blot analysis. Our results showed that the ECM has an important role in cell spreading, adhesion and morphology with a direct effect on modulating RhoA signaling. RhoA activity significantly affected the stress fibers and focal adhesions reorganization, but in a context imposed by the ECM. Thus, RhoA activity modulation in VSMC induced an increased activation of stress fibers and FA formation at 5h, while a significant inhibition was recorded at 24h after plating on the different ECM. Our findings provide biophysical evidence that ECM modulates VSMC response to mechanical stimuli inducing intracellular biochemical signaling involved in cellular adaptation to the local microenvironment.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1998Z
    Nombre del producto:
    Anti-Integrin α2β1 Antibody, clone BHA2.1, azide free