Millipore Sigma Vibrant Logo
 

asa


241 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (192)
  • (11)
  • (2)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Prolonged acetylsalicylic-acid-supplementation-induced gastritis affects the chemical coding of the stomach innervating vagal efferent neurons in the porcine dorsal motor ... 24643520

    The main goal of our research was to study the possible alterations of the chemical coding of the dorsal motor vagal nucleus (DMX) neurons projecting to the porcine stomach prepyloric region following prolonged acetylsalicylic acid supplementation. Fast Blue (FB) was injected into the studied area of the stomach. Since the seventh day following the FB injection, acetylsalicylic acid (ASA) was given orally to the experimental gilts. All animals were euthanized on the 28th day after FB injection. Medulla oblongata sections were then processed for double-labeling immunofluorescence for choline acetyltransferase (ChAT), pituitary adenylate cyclase-activating peptide (PACAP), vasoactive intestinal polypeptide (VIP), nitric oxide synthase (NOS), galanin (GAL), substance P (SP), leu enkephalin (LENK), and cocaine- and amphetamine-regulated transcript (CART). In the control DMX, only PACAP was observed in 30.08 ± 1.97 % of the FB-positive neurons, while VIP, NOS, GAL, SP, LENK, and CART were found exclusively in neuronal processes running between FB-labeled perikarya. In the ASA DMX, PACAP was revealed in 49.53 ± 5.73 % of traced vagal perikarya. Moreover, we found de novo expression of VIP in 40.32 ± 7.84 %, NOS in 25.02 ± 6.08 %, and GAL in 3.37 ± 0.85 % of the FB-labeled neurons. Our results suggest that neuronal PACAP, VIP, NOS, and GAL are mediators of neural response to aspirin-induced stomach inflammatory state.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Elevated levels of NR2A and PSD-95 in the lateral amygdala in depression. 18570704

    Compelling evidence suggests that major depression is associated with dysfunction of the brain glutamatergic transmission, and that the glutamatergic N-methyl-d-aspartate (NMDA) receptor plays a role in antidepressant activity. Recent post-mortem studies demonstrate that depression is associated with altered concentrations of proteins associated with NMDA receptor signalling in the brain. The present study investigated glutamate signalling proteins in the amygdala from depressed subjects, given strong evidence for amygdala pathology in depression. Lateral amygdala samples were obtained from 13-14 pairs of age- sex-, and post-mortem-interval-matched depressed and psychiatrically healthy control subjects. Concentrations of NR1 and NR2A subunits of the NMDA receptor, as well as NMDA receptor-associated proteins such as post-synaptic density protein-95 (PSD-95) and neuronal nitric oxide synthase (nNOS) were measured by Western immunoblotting. Additionally, levels of enzymes involved in glutamate metabolism, including glutamine synthetase and glutamic acid decarboxylase (GAD-67), were measured in the same amygdala samples. NR2A protein levels were markedly and significantly elevated (+115%, p=0.03) in depressed subjects compared to controls. Interestingly, PSD-95 levels were also highly elevated (+128%, p=0.01) in the same depressed subjects relative to controls. Amounts of NR1, nNOS, glutamine synthetase, and GAD-67 were unchanged. Increased levels of NR2A and PSD-95 suggest that glutamate signalling at the NMDA receptor in the amygdala is disrupted in depression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB6046
    Nombre del producto:
    Anti-Cytoplasmic FMR1-interacting protein 1 Antibody
  • Highly efficient differentiation of embryonic stem cells into adipocytes by ascorbic acid. 24858493

    Adipocyte differentiation and function have become the major research targets due to the increasing interest in obesity and related metabolic conditions. Although, late stages of adipogenesis have been extensively studied, the early phases remain poorly understood. Here we present that supplementing ascorbic acid (AsA) to the adipogenic differentiation cocktail enables the robust and efficient differentiation of mouse embryonic stem cells (mESCs) to mature adipocytes. Such ESC-derived adipocytes mimic the gene-expression profile of subcutaneous isolated adipocytes in vivo remarkably well, much closer than 3T3-L1 derived ones. Moreover, the differentiated cells are in a monolayer, allowing a broad range of genome-wide studies in early and late stages of adipocyte differentiation to be performed.
    Tipo de documento:
    Referencia
    Referencia del producto:
    12-370
    Nombre del producto:
    Normal Rabbit IgG
  • Histopathological, ultrastructural, and immunohistochemical assessment of hippocampus structures of rats exposed to TCDD and high doses of tocopherol and acetylsalicylic ... 25879034

    The effect of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) on central nervous system consists of changing expression of estrogen receptors, whereas the result of chronic inflammatory reaction caused by dioxin is occurrence of destructive changes in various organs connected with disturbed metabolism of connective tissue and damage of cells. The aim of the study was to determine the effect of dioxins on function, ultrastructure, and cytological and histological structure of hippocampus, particularly on expression of estrogen receptors in central nervous system as well as to define protective influence of tocopherol (TCP) and acetylsalicylic acid (ASA) on the decrease in activity of proinflammatory effects in central nervous system. It was shown that TCDD contributes to destructive and inflammatory changes along with demyelization of myelin sheaths and atrophy of estrogen receptors in hippocampus. Dioxin contributes to atrophy of estrogen receptors in hippocampus, in which also destructive and inflammatory changes were found along with demyelination of myelin sheaths. Histopathological and ultrastructural image of hippocampus areas in rats, in which both TCP and ASA were used, is characterized by poorly expressed degenerative changes and smaller inflammatory reactivity. Using both TCP and ASA has a protective effect on functions of central nervous system.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB447
  • A cell culture model for investigation of Hirano bodies. 17978823

    Hirano bodies are paracrystalline F-actin-rich aggregations associated with a variety of conditions including aging, and neurodegenerative diseases. The composition and structure of these inclusions have been described by immunohistochemistry and ultrastructure, respectively. However, studies of the physiological function and dynamics of Hirano bodies have been hindered due to lack of a facile in vitro experimental system. We have developed a model for formation of Hirano bodies in mammalian cell cultures by expression of the carboxy-terminal fragment (CT) of a 34-kDa actin-bundling protein. Expression of the CT protein induces F-actin rearrangement in HEK 293, HeLa, Cos7 cells, neuroblastoma and astrocytic cells, and in primary neurons. We have termed these structures model Hirano bodies, since their composition and ultrastructure is quite similar to that reported in vivo. Model Hirano bodies in cell cultures sometimes appeared to be formed of a number of smaller domains, suggesting that small aggregates are intermediates in the formation of Hirano bodies. Stable lines expressing CT and bearing model Hirano bodies exhibit normal growth, morphology, and motility. This model provides a valuable system for the study of the dynamics of Hirano bodies, and their role in disease processes.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB361
    Nombre del producto:
    Anti-Tau Antibody, a.a. 210-241, clone Tau-5
  • Generation of induced pluripotent stem cells from human renal proximal tubular cells with only two transcription factors, OCT4 and SOX2. 22613719

    The tubular epithelium of the kidney is susceptible to injury from a number of different causes, including inflammatory and immune disorders, oxidative stress, and nephrotoxins, among others. Primary renal epithelial cells remain one of the few tools for studying the biochemical and physiological characteristics of the renal tubular system. Nevertheless, differentiated primary cells are not suitable for recapitulation of disease properties that might arise during embryonic kidney formation and further maturation. Thus, cellular systems resembling kidney characteristics are in urgent need to model disease as well as to establish reliable drug-testing platforms. Induced pluripotent stem cells (iPSCs) bear the capacity to differentiate into every cell lineage comprising the adult organism. Thus, iPSCs bring the possibility for recapitulating embryonic development by directed differentiation into specific lineages. iPSC differentiation ultimately allows for both disease modeling in vitro and the production of cellular products with potential for regenerative medicine. Here, we describe the rapid, reproducible, and highly efficient generation of iPSCs derived from endogenous kidney tubular renal epithelial cells with only two transcriptional factors, OCT4 and SOX2. Kidney-derived iPSCs may provide a reliable cellular platform for the development of kidney differentiation protocols allowing drug discovery studies and the study of kidney pathology.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Acetylsalicylic acid inhibits IL-18-induced cardiac fibroblast migration through the induction of RECK. 24265116

    The pathogenesis of cardiac fibrosis and adverse remodeling is thought to involve the ROS-dependent induction of inflammatory cytokines and matrix metalloproteinases (MMPs), and the activation and migration of cardiac fibroblasts (CF). Here we investigated the role of RECK (reversion-inducing-cysteine-rich protein with Kazal motifs), a unique membrane-anchored MMP regulator, on IL-18-induced CF migration, and the effect of acetylsalicylic acid (ASA) on this response. In a Matrigel invasion assay, IL-18-induced migration of primary mouse CF was dependent on both IKK/NF-κB- and JNK/AP-1-mediated MMP9 induction and Sp1-mediated RECK suppression, mechanisms that required Nox4-dependent H(2)O(2) generation. Notably, forced expression of RECK attenuated IL-18-induced MMP9 activation and CF migration. Further, therapeutic concentrations of ASA inhibited IL-18-induced H(2)O(2) generation, MMP9 activation, RECK suppression, and CF migration. The salicylic acid moiety of ASA similarly attenuated IL-18-induced CF migration. Thus, ASA may exert potential beneficial effect in cardiac fibrosis through multiple protective mechanisms.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Evidence that a panel of neurodegeneration biomarkers predicts vasospasm, infarction, and outcome in aneurysmal subarachnoid hemorrhage. 22174930

    Biomarkers for neurodegeneration could be early prognostic measures of brain damage and dysfunction in aneurysmal subarachnoid hemorrhage (aSAH) with clinical and medical applications. Recently, we developed a new panel of neurodegeneration biomarkers, and report here on their relationships with pathophysiological complications and outcomes following severe aSAH. Fourteen patients provided serial cerebrospinal fluid samples for up to 10 days and were evaluated by ultrasonography, angiography, magnetic resonance imaging, and clinical examination. Functional outcomes were assessed at hospital discharge and 6-9 months thereafter. Eight biomarkers for acute brain damage were quantified: calpain-derived α-spectrin N- and C-terminal fragments (CCSntf and CCSctf), hypophosphorylated neurofilament H,14-3-3 β and ζ, ubiquitin C-terminal hydrolase L1, neuron-specific enolase, and S100β. All 8 biomarkers rose up to 100-fold in a subset of patients. Better than any single biomarker, a set of 6 correlated significantly with cerebral vasospasm, brain infarction, and poor outcome. Furthermore, CSF levels of 14-3-3β, CCSntf, and NSE were early predictors of subsequent moderate-to-severe vasospasm. These data provide evidence that a panel of neurodegeneration biomarkers may predict lasting brain dysfunction and the pathophysiological processes that lead to it following aSAH. The panel may be valuable as surrogate endpoints for controlled clinical evaluation of treatment interventions and for guiding aSAH patient care.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1622
    Nombre del producto:
    Anti-Spectrin alpha chain (nonerythroid) Antibody, clone AA6
  • Neurochemistry of the afferents to the rat cochlear root nucleus: possible synaptic modulation of the acoustic startle. 18384963

    Afferents to the primary startle circuit are essential for the elicitation and modulation of the acoustic startle reflex (ASR). In the rat, cochlear root neurons (CRNs) comprise the first component of the acoustic startle circuit and play a crucial role in mediating the ASR. Nevertheless, the neurochemical pattern of their afferents remains unclear. To determine the distribution of excitatory and inhibitory inputs, we used confocal microscopy to analyze the immunostaining for vesicular glutamate and GABA transporter proteins (VGLUT1 and VGAT) on retrogradely labeled CRNs. We also used reverse transcription-polymerase chain reaction (RT-PCR) and immunohistochemistry to detect and localize specific neurotransmitter receptor subunits in the cochlear root. Our results show differential distributions of VGLUT1- and VGAT-immunoreactive endings around cell bodies and dendrites. The RT-PCR data showed a positive band for several ionotropic glutamate receptor subunits, M1-M5 muscarinic receptor subtypes, the glycine receptor alpha1 subunit (GlyRalpha1), GABAA, GABAB, and subunits of alpha2 and beta-noradrenergic receptors. By immunohistochemistry, we confirmed that CRN cell bodies exhibit positive immunoreaction for the glutamate receptor (GluR) 3 and NR1 GluR subunits. Cell bodies and dendrites were also positive for M2 and M4, and GlyRalpha1. Other subunits, such as GluR1 and GluR4 of the AMPA GluRs, were observed in glial cells neighboring unlabeled CRN cell bodies. We further confirmed the existence of noradrenergic afferents onto CRNs from the locus coeruleus by combining tyrosine hydroxylase immunohistochemistry and tract-tracing experiments. Our results provide valuable information toward understanding how CRNs might integrate excitatory and inhibitory inputs, and hence how they could elicit and modulate the ASR.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB5062P
    Nombre del producto:
    Anti-Vesicular GABA Transporter (VGAT) Antibody
  • Activating and silencing histone modifications form independent allelic switch regions in the imprinted Gnas gene. 14962976

    Activation and suppression of gene transcription is tightly controlled by epigenetic modifications. The imprinted Gnas1 gene region contains closely juxtaposed maternally expressed (Nesp) and paternally expressed (Nespas, Gnasxl, Exon 1A) transcripts, providing a unique opportunity to study how epigenetic modifications change in nucleosomes from active to silenced promoters. Using 30 polymorphic sites across the Gnas1 gene region in (C57BL/6JxMus spretus) F(1) mice and chromatin immunoprecipitation (ChIP) assays we identified two allelic switch regions (ASRs) that mark boundaries of epigenetic information. We show that activating signals (histone acetylation and methylation of H3 Lys4) and silencing signals (histone methylation of H3 Lys9 and DNA methylation) segregate independently across the ASRs and suggest that these ASRs allow the transcriptional elongation to proceed through the silenced domain of nearby imprinted promoters. We discuss these findings in light of recent progress in the conceptualization of nucleosome remodeling during transcriptional elongation and in the development of histone code.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo