Millipore Sigma Vibrant Logo
 

neural+stem+cell+freezing+medium


1071 Results Búsqueda avanzada  
Mostrar
Productos (0)
Documentos (1,069)

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (554)
  • (504)
  • (11)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • GLYX-13, a NMDA receptor glycine-site functional partial agonist, induces antidepressant-like effects without ketamine-like side effects. 23303054

    Recent human clinical studies with the NMDA receptor (NMDAR) antagonist ketamine have revealed profound and long-lasting antidepressant effects with rapid onset in several clinical trials, but antidepressant effects were preceded by dissociative side effects. Here we show that GLYX-13, a novel NMDAR glycine-site functional partial agonist, produces an antidepressant-like effect in the Porsolt, novelty induced hypophagia, and learned helplessness tests in rats without exhibiting substance abuse-related, gating, and sedative side effects of ketamine in the drug discrimination, conditioned place preference, pre-pulse inhibition and open-field tests. Like ketamine, the GLYX-13-induced antidepressant-like effects required AMPA/kainate receptor activation, as evidenced by the ability of NBQX to abolish the antidepressant-like effect. Both GLYX-13 and ketamine persistently (24 h) enhanced the induction of long-term potentiation of synaptic transmission and the magnitude of NMDAR-NR2B conductance at rat Schaffer collateral-CA1 synapses in vitro. Cell surface biotinylation studies showed that both GLYX-13 and ketamine led to increases in both NR2B and GluR1 protein levels, as measured by Western analysis, whereas no changes were seen in mRNA expression (microarray and qRT-PCR). GLYX-13, unlike ketamine, produced its antidepressant-like effect when injected directly into the medial prefrontal cortex (MPFC). These results suggest that GLYX-13 produces an antidepressant-like effect without the side effects seen with ketamine at least in part by directly modulating NR2B-containing NMDARs in the MPFC. Furthermore, the enhancement of 'metaplasticity' by both GLYX-13 and ketamine may help explain the long-lasting antidepressant effects of these NMDAR modulators. GLYX-13 is currently in a Phase II clinical development program for treatment-resistant depression.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB2263
    Nombre del producto:
    Anti-GluR1-NT (NT) Antibody, clone RH95
  • Subunit dependencies of N-methyl-D-aspartate (NMDA) receptor-induced alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor internalization. 16436589

    N-Methyl-D-aspartate (NMDA) receptor (NMDAR) activity regulates the net number of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors (AMPAR) at the cell surface by modulating the balance between AMPAR membrane insertion and endocytosis. In this study, we addressed the role of NMDAR subtypes and of NMDAR-mediated Ca2+ influx in the NMDAR-induced endocytosis of GluR2-containing AMPARs in primary murine hippocampal neurons. We found that NMDAR activation enhanced the endocytosis of AMPARs containing the GluR2 splice variants with short, but not long, cytoplasmic tails. NMDA-induced GluR2 endocytosis was completely inhibited by pharmacological block of NR2B-containing NMDARs. In turn, preferential block of NR2A-containing NMDARs did not affect NMDA-induced AMPAR endocytosis, indicating that AMPAR internalization is controlled by a restricted set of NMDARs. The NMDA-induced GluR2 internalization was also observed in the absence of extracellular Na+ ions, suggesting that membrane depolarization is not a prerequisite for this effect. Furthermore, the activation of Ca2+-impermeable NMDARs containing the mutant NR1(N598R) subunit failed to enhance AMPAR endocytosis, indicating a requirement of Ca2+ influx directly through the NMDAR channels. In summary, our findings suggest that the NMDAR-induced selective internalization of short C-terminal GluR2-containing AMPARs requires a Ca2+ signal that originates from NMDAR channels and is processed in an NMDAR subtype-restricted manner.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB397
    Nombre del producto:
    Anti-Glutamate Receptor 2 Antibody, extracellular, clone 6C4
  • Assembly of N-methyl-D-aspartate (NMDA) receptors. 12887323

    The N-methyl-D-aspartate receptor (NMDAR) requires both NR1 and NR2 subunits to form a functional ion channel. Despite the recent advances in our understanding of the contributions of these different subunits to both the function and pharmacology of the NMDAR, the precise subunit stoichiometry of the receptor and the regions of the subunits governing subunit interactions remain unclear. Since NR2 subunits are not transported to the cell surface unless they associate with NR1 subunits, cell-surface expression of NR2A can be used to monitor the association of the different subunits in cells transfected with N- and C-terminally truncated NR1 subunits. By combining measurements of cell-surface expression of NR2A with co-immunoprecipitation experiments, and by using Blue Native gel electrophoresis to determine the oligomerization status of the subunits, we have shown that regions of the N-terminus of NR1 are critical for subunit association, whereas the truncation of the C-terminus of NR1 before the last transmembrane region has no effect on the association of the subunits. Evidence from the Blue Native gels, sucrose-gradient centrifugation and size exclusion of soluble NR1 domains suggests that NR1 subunits alone can form stable dimers. Using a cell line, which can be induced to express the NMDAR following exposure to dexamethasone, we have shown that NMDARs can be expressed at the cell surface within 5 h of the recombinant gene induction, and that there appears to be a delay between the first appearance of the subunits and their stable association.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Lead exposure during synaptogenesis alters NMDA receptor targeting via NMDA receptor inhibition. 21192972

    N-methyl-D-aspartate receptor (NMDAR) ontogeny and subunit expression are altered during developmental lead (Pb²+) exposure. However, it is unknown whether these changes occur at the synaptic or cellular level. Synaptic and extra-synaptic NMDARs have distinct cellular roles, thus, the effects of Pb²+ on NMDAR synaptic targeting may affect neuronal function. In this communication, we show that Pb²+ exposure during synaptogenesis in hippocampal neurons altered synaptic NMDAR composition, resulting in a decrease in NR2A-containing NMDARs at established synapses. Conversely, we observed increased targeting of the obligatory NR1 subunit of the NMDAR to the postsynaptic density (PSD) based on the increased colocalization with the postsynaptic protein PSD-95. This finding together with increased binding of the NR2B-subunit specific ligand [³H]-ifenprodil, suggests increased targeting of NR2B-NMDARs to dendritic spines as a result of Pb²+ exposure. During brain development, there is a shift of NR2B- to NR2A-containing NMDARs. Our findings suggest that Pb²+ exposure impairs or delays this developmental switch at the level of the synapse. Finally, we show that alter expression of NMDAR complexes in the dendritic spine is most likely due to NMDAR inhibition, as exposure to the NMDAR antagonist aminophosphonovaleric acid (APV) had similar effects as Pb²+ exposure. These data suggest that NMDAR inhibition by Pb²+ during synaptogensis alters NMDAR synapse development, which may have lasting consequences on downstream signaling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1557P
    Nombre del producto:
    Anti-NMDAR2B Antibody
  • Splice variants of the NR1 subunit differentially induce NMDA receptor-dependent gene expression. 16436592

    Subunits of the NMDA receptor (NMDAR) associate with many postsynaptic proteins that substantially broaden its signaling capacity. Although much work has been focused on the signaling of NR2 subunits, little is known about the role of the NR1 subunit. We set out to elucidate the role of the C terminus of the NR1 subunit in NMDAR signaling. By introducing a C-terminal deletion mutant of the NR1 subunit into cultured neurons from NR1(-/-) mice, we found that the C terminus was essential for NMDAR inactivation, downstream signaling, and gene expression, but not for global increases in intracellular Ca2+. Therefore, whereas NMDARs can increase Ca2+ throughout the neuron, NMDAR-dependent signaling, both local and long range, requires coupling through the NR1 C terminus. Two major NR1 splice variants differ by the presence or absence of a C-terminal domain, C1, which is determined by alternative splicing of exon 21. Analysis of these two variants showed that removal of this domain significantly reduced the efficacy of NMDAR-induced gene expression without affecting receptor inactivation. Thus, the NR1 C terminus couples to multiple downstream signaling pathways that can be modulated selectively by RNA splicing.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB363
    Nombre del producto:
    Anti-NMDAR1 Antibody, clone 54.1
  • The NMDA receptor is coupled to the ERK pathway by a direct interaction between NR2B and RasGRF1. 14622581

    The NMDA subtype of glutamate receptors (NMDAR) at excitatory neuronal synapses plays a key role in synaptic plasticity. The extracellular signal-regulated kinase (ERK1,2 or ERK) pathway is an essential component of NMDAR signal transduction controlling the neuroplasticity underlying memory processes, neuronal development, and refinement of synaptic connections. Here we show that NR2B, but not NR2A or NR1 subunits of the NMDAR, interacts in vivo and in vitro with RasGRF1, a Ca(2+)/calmodulin-dependent Ras-guanine-nucleotide-releasing factor. Specific disruption of this interaction in living neurons abrogates NMDAR-dependent ERK activation. Thus, RasGRF1 serves as NMDAR-dependent regulator of the ERK kinase pathway. The specific association of RasGRF1 with the NR2B subunit and study of ERK activation in neurons with varied content of NR2B suggests that NR2B-containing channels are the dominant activators of the NMDA-dependent ERK pathway.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1557P
    Nombre del producto:
    Anti-NMDAR2B Antibody
  • Inhibitory effects of Group I metabotropic glutamate receptors antagonists on the expression of NMDA receptor NR1 subunit in morphine tolerant rats. 19348736

    N-methyl-D-aspartate receptor (NMDAR) and Group I metabotropic glutamate receptors (mGluRs) are involved in the process of morphine tolerance. Previous studies have shown that Group I mGluRs can modulate NMDAR functions in the central nervous system. The aim of the present study was to examine the influence of Group I mGluRs antagonists on the expression of NMDA receptor NR1 subunit (NR1) in the rat spinal cord. Morphine tolerance was induced in rats by repeated administration of 10 microg morphine (intrathecal, i.t.) twice a day for 7 consecutive days. Tail flick test was used to assess the effect of Group I mGluRs antagonist, AIDA ((RS)-1-Aminoindan-1,5 dicarboxylic acid) or mGluR5 antagonist, MPEP (2-methyl-6-(phenylethynyl)pyridine) on morphine antinociceptive tolerance. The expression of NR1 was measured by immunofluorescence and Western blot. Behavioral tests revealed that both AIDA and MPEP attenuated the development of morphine tolerance. The expression of NR1 was upregulated in the dorsal horn of spinal cord after chronic morphine treatment. AIDA or MPEP co-administered with morphine attenuated morphine induced upregulation of NR1. These findings suggest that the development of morphine tolerance partly prevented by Group I mGluRs antagonists may due to its inhibitory effect on the expression of NR1 subunit.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB9864
    Nombre del producto:
    Anti-NMDAR1 Antibody, rabbit monoclonal
  • The NMDAR subunit NR3A interacts with microtubule-associated protein 1S in the brain. 17658481

    When screening a brain cDNA library, we found that the N-methyl-D-aspartate receptor subunit NR3A binds to microtubule-associated protein (MAP) 1S/chromosome 19 open reading frame 5 (C19ORF5). The interaction was confirmed in vitro and in vivo, and binding of MAP1S was localized to the membrane-proximal part of the NR3A C-terminus. MAP1S belongs to the same family as MAP1A and MAP1B, and was found to be abundant in both postnatal and adult rat brain. In hippocampal neurons the distribution-pattern of MAP1S resembled that of beta-tubulin III, but a fraction of the protein colocalized with synaptic markers synapsin and postsynaptic density protein 95 (PSD95), in beta-tubulin III-negative filopodia-like protrusions. There was coexistance between MAP1S and NR3A immunoreactivity in neurite shafts and occasionally in filopodia-like processes. MAP1S potentially links NR3A to the cytoskeleton, and may stabilize NR3A-containing receptors at the synapse and regulate their movement between synaptic and extrasynaptic sites.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB397
    Nombre del producto:
    Anti-Glutamate Receptor 2 Antibody, extracellular, clone 6C4
  • Genetic, pharmacological and lesion analyses reveal a selective role for corticohippocampal gLUN2B in a novel repeated swim stress paradigm. 21704131

    Glutamate and N-methyl-d-aspartate receptor (NMDAR) dysfunction is strongly implicated in the pathophysiology of mood and anxiety disorders. Treatment with NMDAR antagonists has antidepressant efficacy in treatment-resistant depressives. In preclinical rodent models, NMDAR antagonist administration reduces anxiety- and stress-related behaviors in concert with increases in prefrontal cortical (PFC) dendritic spinogenesis and synaptic proteins. While these effects have been attributed to actions at the NMDAR GluN2B subunit, the precise role of cortical GluN2B in mediating emotional behaviors and stress-responsivity is not fully understood. Here, we employed a novel mutant model in which the GluN2B subunit is selectively, postnatally deleted in principal neurons in the cortex and the dorsal CA1 subregion of the hippocampus. GluN2BKO mice were phenotyped on a battery of tests for anxiety-related (light/dark exploration, stress-induced hyperthermia) and antidepressant-sensitive (sucrose preference, novelty-induced hypophagia, single-trial forced swim) behaviors. A novel repeated inescapable forced swim paradigm (riFS) was developed to assess behavioral responses to repeated stress in the GluN2BKO mice. For comparison, non-mutant C57BL/6J mice were tested for single-trial forced swim behavior after systemic Ro 25-6981 treatment and for riFS behavior after lesions of the ventromedial prefrontal cortex. riFS-induced alterations in corticolimbic GluN2B expression were also examined in C57BL/6J mice. We found that GluN2BKO mice reduced \"despair-like\" behavior in the riFS procedure, as compared to GluN2BFLOX controls. By contrast, GluN2BKO mice showed minimal alterations on anxiety-like or antidepressant-sensitive assays, including the single-trial forced swim test. In C57BL/6J mice, induction of \"despair-like\" responses in the riFS test was behaviorally attenuated by vmPFC lesions, and was associated with changes in limbic GluN2B expression. Collectively, these data suggest that cortical GluN2B plays a major role in modulating adaptive responses to stress. Current findings provide further support for GluN2B as a key mechanism underlying stress responsivity and a novel pharmacotherapeutic target for stress-related neuropsychiatric disorders.Copyright © 2011. Published by Elsevier Ltd.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB1557P
    Nombre del producto:
    Anti-NMDAR2B Antibody
  • GABAB-mediated rescue of altered excitatory-inhibitory balance, gamma synchrony and behavioral deficits following constitutive NMDAR-hypofunction. 22806213

    Reduced N-methyl-D-aspartate-receptor (NMDAR) signaling has been associated with schizophrenia, autism and intellectual disability. NMDAR-hypofunction is thought to contribute to social, cognitive and gamma (30-80 Hz) oscillatory abnormalities, phenotypes common to these disorders. However, circuit-level mechanisms underlying such deficits remain unclear. This study investigated the relationship between gamma synchrony, excitatory-inhibitory (E/I) signaling, and behavioral phenotypes in NMDA-NR1(neo-/-) mice, which have constitutively reduced expression of the obligate NR1 subunit to model disrupted developmental NMDAR function. Constitutive NMDAR-hypofunction caused a loss of E/I balance, with an increase in intrinsic pyramidal cell excitability and a selective disruption of parvalbumin-expressing interneurons. Disrupted E/I coupling was associated with deficits in auditory-evoked gamma signal-to-noise ratio (SNR). Gamma-band abnormalities predicted deficits in spatial working memory and social preference, linking cellular changes in E/I signaling to target behaviors. The GABA(B)-receptor agonist baclofen improved E/I balance, gamma-SNR and broadly reversed behavioral deficits. These data demonstrate a clinically relevant, highly translatable neural-activity-based biomarker for preclinical screening and therapeutic development across a broad range of disorders that share common endophenotypes and disrupted NMDA-receptor signaling.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo