Millipore Sigma Vibrant Logo
 

proteolytical


499 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (484)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • Megakaryocyte polyploidy is inhibited by lysyl oxidase propeptide. 23518500

    Megakaryocytes (MKs), the platelet precursors, undergo an endomitotic cell cycle that leads to polyploidy. Lysyl oxidase propeptide (LOX-PP) is generated from lysyl oxidase (LOX) pro-enzyme after proteolytical cleavage. We recently reported that LOX, a known matrix cross-linking enzyme, contributes to MK lineage expansion. In addition, LOX expression levels are ploidy-dependent, with polyploidy MKs having minimal levels. This led us to test the effects of LOX-PP on the number and ploidy of primary MKs. LOX-PP significantly decreases mouse bone marrow MK ploidy coupled with a reduction in MK size. MK number is unchanged upon LOX-PP treatment. Analysis of LOX-PP- or vehicle-treated MKs by western blotting revealed a reduction in ERK1/2 phosphorylation and in the levels of its downstream targets, cyclin D3 and cyclin E, which are known to play a central role in MK endomitosis. Pull-down assays and immunochemistry staining indicated that LOX-PP interacts with α-tubulin and the mictotubules, which can contribute to decreased MK ploidy. Thus, our findings defined a role for LOX-PP in reducing MK ploidy. This suggests that high-level expression of LOX in aberrantly proliferating MKs could play a part in inhibiting their polyploidization via LOX-PP.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-944
    Nombre del producto:
    Anti-TPOR/c-Mpl Antibody
  • alpha1,3Fucosyltransferase VI is expressed in HepG2 cells and codistributed with beta1,4galactosyltransferase I in the golgi apparatus and monensin-induced swollen vesicl ... 10536043

    The major alpha1,3fucosyltransferase activity in plasma, liver, and kidney is related to fucosyltransferase VI which is encoded by the FUT6 gene. Here we demonstrate the presence of alpha1, 3fucosyltransferase VI (alpha3-FucT VI) in the human HepG2 hepatoma cell line by specific activity assays, detection of transcripts, and the use of specific antibodies. First, FucT activity in HepG2 cell lysates was shown to prefer sialyl-N-acetyllactosamine as acceptor substrate indicating expression of alpha3-FucT VI. RT-PCR analysis further confirmed the exclusive presence of the alpha3-FucT VI transcripts among the five human alpha3-FucTs cloned to date. alpha3-FucT VI was colocalized with beta1,4galactosyltransferase I (beta4-GalT I) to the Golgi apparatus by dual confocal immunostaining. Pulse/chase analysis of metabolically labeled alpha3-FucT VI showed maturation of alpha3-FucT VI from the early 43 kDa form to the mature, endoglycosidase H-resistant form of 47 kDa which was detected after 2 h of chase. alpha3-FucT VI was released to the medium and accounted for 50% of overall cell-associated and released enzyme activity. Release occurred by proteolytical cleavage which produced a soluble form of 43 kDa. Monensin treatment segregated alpha3-FucT VI from the Golgi apparatus to swollen peripheral vesicles where it was colocalized with beta4-GalT I while alpha2,6(N)sialyltransferase remained associated with the Golgi apparatus. Both constitutive secretion of alpha3-FucT VI and its monensin-induced relocation to vesicles analogous to beta4-GalT I suggest a similar post-Golgi pathway of both alpha3-FucT VI and beta4-GalT I.
    Tipo de documento:
    Referencia
    Referencia del producto:
    ABT116
  • Proteolytically cleaved MLL subunits are susceptible to distinct degradation pathways. 21670200

    The mixed lineage leukemia (MLL) proto-oncogenic protein is a histone-lysine N-methyltransferase that is produced by proteolytic cleavage and self-association of the respective functionally distinct subunits (MLL(N) and MLL(C)) to form a holocomplex involved in epigenetic transcriptional regulation. On the basis of studies in Drosophila it has been suggested that the separated subunits might also have distinct functions. In this study, we used a genetically engineered mouse line that lacked MLL(C) to show that the MLL(N)-MLL(C) holocomplex is responsible for MLL functions in various developmental processes. The stability of MLL(N) is dependent on its intramolecular interaction with MLL(C), which is mediated through the first and fourth plant homeodomain (PHD) fingers (PHD1 and PHD4) and the phenylalanine/tyrosine-rich (FYRN) domain of MLL(N). Free MLL(N) is destroyed by a mechanism that targets the FYRN domain, whereas free MLL(C) is exported to the cytoplasm and degraded by the proteasome. PHD1 is encoded by an alternatively spliced exon that is occasionally deleted in T-cell leukemia, and its absence produces an MLL mutant protein that is deficient for holocomplex formation. Therefore, this should be a loss-of-function mutant allele, suggesting that the known tumor suppression role of MLL may also apply to the T-cell lineage. Our data demonstrate that the dissociated MLL subunits are subjected to distinct degradation pathways and thus not likely to have separate functions unless the degradation mechanisms are inhibited.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1501R
    Nombre del producto:
    Anti-Actin Antibody,clone C4
  • A metalloproteinase disintegrin that releases tumour-necrosis factor-alpha from cells. 9034190

    Mammalian cells proteolytically release (shed) the extracellular domains of many cell-surface proteins. Modification of the cell surface in this way can alter the cell's responsiveness to its environment and release potent soluble regulatory factors. The release of soluble tumour-necrosis factor-alpha (TNF-alpha) from its membrane-bound precursor is one of the most intensively studied shedding events because this inflammatory cytokine is so physiologically important. The inhibition of TNF-alpha release (and many other shedding phenomena) by hydroxamic acid-based inhibitors indicates that one or more metalloproteinases is involved. We have now purified and cloned a metalloproteinase that specifically cleaves precursor TNF-alpha. Inactivation of the gene in mouse cells caused a marked decrease in soluble TNF-alpha production. This enzyme (called the TNF-alpha-converting enzyme, or TACE) is a new member of the family of mammalian adamalysins (or ADAMs), for which no physiological catalytic function has previously been identified. Our results should facilitate the development of therapeutically useful inhibitors of TNF-alpha release, and they indicate that an important function of adamalysins may be to shed cell-surface proteins.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Evidence for dimeric BACE-mediated APP processing. 20097169

    beta-Secretase (BACE) is an aspartyl protease, which proteolytically processes amyloid precursor protein, making BACE an interesting pharmacological target in Alzheimer's disease. To study the enzymatic function of BACE, we mutated either of the two aspartic acid residues in the active site of BACE. This rendered BACE functionally inactive without affecting the degree of glycosylation or endosomal localization. In contrast, substituting both active site aspartic acid residues produced a functionally inactive, endoplasmic reticulum-retained and partially glycosylated BACE. Interestingly, co-expression of the two single active site mutants partially restored beta-site cleavage of amyloid precursor protein, and the restored activity was inhibited with similar dose-dependency and potency as wildtype BACE by a small molecule inhibitor raised against BACE. In sum, our data suggest that two different active site mutants can complement each other in a partially functional BACE dimer and mediate APP processing. Copyright 2010 Elsevier Inc. All rights reserved.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB5308
    Nombre del producto:
    Anti-BACE Antibody, CT, clone 61-3E7
  • Role of lysyl oxidase propeptide in secretion and enzyme activity. 20717923

    Lysyl oxidase (LOX) is secreted as a proenzyme (proLOX) that is proteolytically processed in the extracellular milieu to release the propeptide and mature, active LOX. LOX oxidizes lysyl residues of a number of protein substrates in the extracellular matrix and on the cell surface, which impacts several physiological and disease states. Although the LOX propeptide (LOX-PP) is glycosylated, little is known about the role of this modification in LOX secretion and activity. To gain insight into this issue, cells were transfected with native, full-length LOX cDNA (pre-pro-LOX), the N-glycosylation null pre-[N/Q]pro-LOX cDNA and the deletion mutant pre-LOX cDNA, referred to as secretory LOX, in which mature LOX is targeted to the secretory pathway without its N-terminal propeptide sequence. The results show that glycosylation of the LOX-PP is not required for secretion and extracellular processing of pro-LOX but it is required for optimal enzyme activity of the resulting mature LOX. Complete deletion of the propeptide sequence prevents mature LOX from exiting the endoplasmic reticulum (ER). Taken together, our study points out the requirement of the LOX-PP for pro-LOX exit from the ER and is the first to highlight the influence of LOX-PP glycosylation on LOX enzyme activity.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB3792
    Nombre del producto:
    Anti-V5 Epitope Tag Antibody
  • Chemokine-like receptor 1 expression by macrophages in vivo: regulation by TGF-beta and TLR ligands. 16863918

    Chemokine-like receptor 1 (CMKLR1) is expressed by human antigen presenting cells and binds to chemerin, a proteolytically activatable chemoattractant. Here we assessed the expression of mCMKLR1 on mouse leukocytes, focusing on ex vivo dendritic cells (DC) and macrophages. mCMKLR1-expressing cells were evaluated for functional responses to chemerin. We examined the regulation of mCMKLR1 expression by exposure to toll-like receptor (TLR) ligands and cytokines. Finally, we evaluated ex vivo human ascites macrophages for huCMKLR1 expression and chemerin responsiveness.A novel anti-mCMKLR1 monoclonal antibody was generated to assess mCMKLR1 expression by mouse leukocytes using flow cytometry. Mouse bone marrow-derived DC precursors, mouse peritoneal macrophages, and human ascites leukocytes were examined in functional assays (in vitro chemotaxis and intracellular calcium mobilization).During DC differentiation from bone marrow, mCMKLR1 is upregulated early and then diminishes with time in culture. Most DC in vivo do not detectably express the receptor. In contrast, freshly isolated F4/80+CD11b+ mouse serosal macrophages express mCMKLR1, bind a fluorescently labeled chemerin peptide, and display calcium signaling and migration to the active ligand. Interestingly, macrophage mCMKLR1 is suppressed by proinflammatory cytokines and TLR ligands, whereas treatment with TGF-beta upregulates the receptor. A small population of blood-borne F4/80+CD11b+ macrophages also expresses mCMKLR1. Freshly isolated macrophages from human ascites fluid express CMKLR1 and are chemerin responsive, as well.The conserved expression of CMKLR1 by macrophages in mouse and man, coupled with the stimuli-specific regulation of CMKLR1, may reflect a critical role for CMKLR1:chemerin in shaping the nature (either proinflammatory or suppressive) in macrophage-mediated immune responses.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MABF1011
    Nombre del producto:
    Anti-CMKLR1 Antibody, clone BZ194
  • Proteolytic action of kallikrein-related peptidase 7 produces unique active matrix metalloproteinase-9 lacking the C-terminal hemopexin domains. 21616098

    The gelatinases, matrix metalloproteinase (MMP)-9 and -2, are produced as latent, inactive enzymes that can be proteolytically activated by a number of proteases. In many normal and pathological conditions, where the expression of MMPs is deregulated, changes in the expression of other proteases have also been reported. Human kallikrein-related peptidase 7 (KLK7), a chymotryptic-like serine protease, is overexpressed in many different types of neoplastic conditions, which have also been shown to express high levels of both MMP-9 and -2. Since the activation of MMPs by KLK7 has never been examined, we sought to determine whether KLK7 can activate these MMPs. To test this hypothesis KLK7 was incubated with the recombinant MMPs and the products of the reaction were analyzed for their activity. Incubation of proMMP-9 with KLK7 resulted in the production of a novel truncated, active MMP-9 lacking the C-terminal hemopexin domains. In contrast, KLK7 degraded, but did not activate, proMMP-2. The novel activation of proMMP-9 by KLK7 was further confirmed using conditioned medium prepared from an MMP-9-expressing cell line, MDA-MMP-9. Our results clearly establish that KLK7 activates proMMP-9 to produce a novel truncated, active MMP-9 product not generated by other proteases. These findings suggest that KLK7 may play an important role in the activation of MMP-9 in tumors that express high levels of both these proteases and the resulting truncated MMP may possess altered substrate specificities compared with full-length MMP-9 activated by other proteases.
    Tipo de documento:
    Referencia
    Referencia del producto:
    AB19016
    Nombre del producto:
    Anti-MMP-9 Antibody, Catalytic domain
  • Identification of candidate angiogenic inhibitors processed by matrix metalloproteinase 2 (MMP-2) in cell-based proteomic screens: disruption of vascular endothelial grow ... 17908800

    Matrix metalloproteinases (MMPs) exert both pro- and antiangiogenic functions by the release of cytokines or proteolytically generated angiogenic inhibitors from extracellular matrix and basement membrane remodeling. In the Mmp2-/- mouse neovascularization is greatly reduced, but the mechanistic aspects of this remain unclear. Using isotope-coded affinity tag labeling of proteins analyzed by multidimensional liquid chromatography and tandem mass spectrometry we explored proteome differences between Mmp2-/- cells and those rescued by MMP-2 transfection. Proteome signatures that are hallmarks of proteolysis revealed cleavage of many known MMP-2 substrates in the cellular context. Proteomic evidence of MMP-2 processing of novel substrates was found. Insulin-like growth factor binding protein 6, follistatin-like 1, and cystatin C protein cleavage by MMP-2 was biochemically confirmed, and the cleavage sites in heparin affin regulatory peptide (HARP; pleiotrophin) and connective tissue growth factor (CTGF) were sequenced by matrix-assisted laser desorption ionization-time of flight mass spectrometry. MMP-2 processing of HARP and CTGF released vascular endothelial growth factor (VEGF) from angiogenic inhibitory complexes. The cleaved HARP N-terminal domain increased HARP-induced cell proliferation, whereas the HARP C-terminal domain was antagonistic and decreased cell proliferation and migration. Hence the unmasking of cytokines, such as VEGF, by metalloproteinase processing of their binding proteins is a new mechanism in the control of cytokine activation and angiogenesis.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB13489
  • Distinct Localization of Mature HGF from its Precursor Form in Developing and Repairing the Stomach 31212972

    Hepatocyte growth factor (HGF) is secreted as an inactive single-chain HGF (scHGF); however, only proteolytically processed two-chain HGF (tcHGF) can activate the MET receptor. We investigated the localization of tcHGF and activated/phosphorylated MET (pMET) using a tcHGF-specific antibody. In day 16.5 mouse embryos, total HGF (scHGF + tcHGF) was mainly localized in smooth muscle cells close to, but separate from, MET-positive epithelial cells in endodermal organs, including the stomach. In the adult stomach, total HGF was localized in smooth muscle cells, and tcHGF was mainly localized in the glandular base region. Immunostaining for pMET and Lgr5-driven green fluorescent protein (GFP) indicated that pMET localization overlapped with Lgr5+ gastric stem cells. HGF promoted organoid formation similar to EGF, indicating the potential for HGF to promote the survival and growth of gastric stem cells. pMET and tcHGF localizations changed during regeneration following gastric injury. These results indicate that MET is constantly activated in gastric stem cells and that the localization of pMET differs from the primary localization of precursor HGF but has a close relationship to tcHGF. Our results suggest the importance of the microenvironmental generation of tcHGF in the regulation of development, regeneration, and stem cell behavior.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo