Millipore Sigma Vibrant Logo
 

tits


6082 Results Búsqueda avanzada  
Mostrar

Acote sus resultados Utilice los filtros siguientes para refinar su búsqueda

Tipo de documento

  • (6,013)
  • (1)
¿No encuentra lo que está buscando?
Póngase en contacto con
el Servicio de Atención
al Cliente

 
¿Necesita ayuda para encontrar un documento?
  • High fat diet induced hepatic steatosis establishes a permissive microenvironment for colorectal metastases and promotes primary dysplasia in a murine model. 19541928

    Non-alcoholic fatty liver disease (NAFLD), which includes steatosis and its progression to non-alcoholic steatohepatitis, is a liver disorder of increasing clinical significance. Here we characterize a murine model of high fat diet-induced NAFLD with progression from liver steatosis to histological features compatible with steatohepatitis and more advanced stages of NAFLD in humans, including chronic portal inflammation, pericellular and bridging fibrosis, Mallory body formation, and bile ductular reaction. Chronic changes induced by the prolonged consumption of a high-fat diet alone culminate in the development of primary liver dysplasias. Importantly, we extend these studies to demonstrate that even the early stages of uncomplicated steatosis provide a permissive microenvironment for the growth of colon cancer cells that are metastatic to the liver. High fat diet-induced steatosis, coupled with a splenic injection model of experimental liver metastasis using syngeneic MC38 colon cancer cells, resulted in an increased number of secondary tumor nodules and metastatic burden in steatotic livers. Metastatic nodules were associated with focal peritumoral areas of infiltrating inflammatory cells and associated apoptotic cell populations. These results suggest that the modulation of specific host factors in the steatotic liver contributes to tumor progression in the microenvironment of NAFLD.
    Tipo de documento:
    Referencia
    Referencia del producto:
    06-570
    Nombre del producto:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Riboflavin Depletion Promotes Tumorigenesis in HEK293T and NIH3T3 Cells by Sustaining Cell Proliferation and Regulating Cell Cycle-Related Gene Transcription. 29741716

    Riboflavin is an essential component of the human diet and its derivative cofactors play an established role in oxidative metabolism. Riboflavin deficiency has been linked with various human diseases.The objective of this study was to identify whether riboflavin depletion promotes tumorigenesis.HEK293T and NIH3T3 cells were cultured in riboflavin-deficient or riboflavin-sufficient medium and passaged every 48 h. Cells were collected every 5 generations and plate colony formation assays were performed to observe cell proliferation. Subcutaneous tumorigenicity assays in NU/NU mice were used to observe tumorigenicity of riboflavin-depleted HEK293T cells. Mechanistically, gene expression profiling and gene ontology analysis were used to identify abnormally expressed genes induced by riboflavin depletion. Western blot analyses, cell cycle analyses, and chromatin immunoprecipitation were used to validate the expression of cell cycle-related genes.Plate colony formation of NIH3T3 and HEK293T cell lines was enhanced >2-fold when cultured in riboflavin-deficient medium for 10-20 generations. Moreover, we observed enhanced subcutaneous tumorigenicity in NU/NU mice following injection of riboflavin-depleted compared with normal HEK293T cells (55.6% compared with 0.0% tumor formation, respectively). Gene expression profiling and gene ontology analysis revealed that riboflavin depletion induced the expression of cell cycle-related genes. Validation experiments also found that riboflavin depletion decreased p21 and p27 protein levels by ∼20%, and increased cell cycle-related and expression-elevated protein in tumor (CREPT) protein expression >2-fold, resulting in cyclin D1 and CDK4 levels being increased ∼1.5-fold, and cell cycle acceleration. We also observed that riboflavin depletion decreased intracellular riboflavin levels by 20% and upregulated expression of riboflavin transporter genes, particularly SLC52A3, and that the changes in CREPT and SLC52A3 correlated with specific epigenetic changes in their promoters in riboflavin-depleted HEK293T cells.Riboflavin depletion contributes to HEK293T and NIH3T3 cell tumorigenesis and may be a risk factor for tumor development.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-10086
    Nombre del producto:
    EZ-Magna ChIP™ A/G Chromatin Immunoprecipitation Kit
  • Insulin responsiveness in metabolic syndrome after eight weeks of cycle training. 23669880

    Insulin resistance in obesity is decreased after successful diet and exercise. Aerobic exercise training alone was evaluated as an intervention in subjects with the metabolic syndrome.Eighteen nondiabetic, sedentary subjects, 11 with the metabolic syndrome, participated in 8 wk of increasing intensity stationary cycle training.Cycle training without weight loss did not change insulin resistance in metabolic syndrome subjects or sedentary control subjects. Maximal oxygen consumption (V·O 2max), activated muscle AMP-dependent kinase, and muscle mitochondrial marker ATP synthase all increased. Strength, lean body mass, and fat mass did not change. The activated mammalian target of rapamycin was not different after training. Training induced a shift in muscle fiber composition in both groups but in opposite directions. The proportion of type 2× fibers decreased with a concomitant increase in type 2a mixed fibers in the control subjects, but in metabolic syndrome, type 2× fiber proportion increased and type 1 fibers decreased. Muscle fiber diameters increased in all three fiber types in metabolic syndrome subjects. Muscle insulin receptor expression increased in both groups, and GLUT4 expression increased in the metabolic syndrome subjects. The excess phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser337 in metabolic syndrome muscle tended to increase further after training in spite of a decrease in total IRS-1.In the absence of weight loss, the cycle training of metabolic syndrome subjects resulted in enhanced mitochondrial biogenesis and increased the expression of insulin receptors and GLUT4 in muscle but did not decrease the insulin resistance. The failure for the insulin signal to proceed past IRS-1 tyrosine phosphorylation may be related to excess serine phosphorylation at IRS-1 Ser337, and this is not ameliorated by 8 wk of endurance exercise training.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Persistent diet-induced obesity in male C57BL/6 mice resulting from temporary obesigenic diets. 19401758

    BACKGROUND: Does diet-induced obesity persist after an obesigenic diet is removed? We investigated this question by providing male C57BL/6 mice with free access to two different obesigenic diets followed by a switch to chow to determine if obesity was reversible. METHODOLOGY/PRINCIPAL FINDINGS: Male C57BL/6 mice were randomly assigned to five weight-matched groups: 1) C group that continuously received a chow diet; 2) HF group on a 60% high fat diet; 3) EN group on the high fat diet plus liquid Ensure; 4) HF-C group switched from high fat to chow after 7 weeks; 5) EN-C group switched from high fat plus Ensure to chow after 7 weeks. All food intake was ad libitum. Body weight was increased after 7 weeks on both obesigenic diets (44.6+/-0.65, 39.8+/-0.63, and 28.6+/-0.63 g for EN, HF, and C groups, respectively) and resulted in elevated concentrations of serum insulin, glucose, and leptin and lower serum triglycerides. Development of obesity in HF and EN mice was caused by increased energy intake and a relative decrease of average energy output along with decreased ambulatory activity. After the switch to chow, the HF-C and EN-C groups lost weight but subsequently maintained a state of persistent obesity in comparison to the C group (34.8+/-1.2, 34.1+/-1.2 vs. 30.8+/-0.8 g respectively; P0.05) with a 40-50% increase of body fat. All serum hormones and metabolites returned to control levels with the exception of a trend for increased leptin. The HF-C and EN-C groups had an average energy output in line with the C group and the persistent obesity was maintained despite a non-significant increase of energy intake of less than 1 kcal/d at the end of the study. CONCLUSION: Our results illustrate the importance of considering the history of energy imbalance in determining body weight and that a persistent elevation of body weight after removal of obesigenic diets can result from very small increases of energy intake.
    Tipo de documento:
    Referencia
    Referencia del producto:
    SRI-13K
    Nombre del producto:
    Sensitive Rat Insulin RIA
  • Hepatic cellular senescence pathway genes are induced through histone modifications in a diet-induced obese rat model. 22194422

    Overnutrition, such as a high-fat (HF) diet, is a feature followed by some in developed nations that leads to obesity and fatty liver disease. In rats, when fed a fat-high diet, some develop obesity (obesity prone, OP) while others display an obesity-resistant (OR) phenotype. The present study investigated the differences between OP and OR rats on their activation of hepatic cellular senescence pathways on a HF diet. Male OP and OR rats were fed a HF diet containing 45% kcal from fat for 13 wk, and livers were collected for analysis by quantitative real-time PCR, Western blot, and chromatin immunoprecipitation. OP rats were 41% heavier than OR rats, despite consuming the same amount of food. Triacylglycerol levels were increased significantly in both plasma and liver of OP rats. Gene analysis demonstrated a significant increase of both the amount and the transcription rates of p16(INK4a) and p21(Cip1) mRNA in OP rats. The increased p16(INK4a) and p21(Cip1) also caused a significant decrease in the level of phosphorylation of retinoblastoma protein. In OP rats, the increase of p16(INK4a) was associated with the higher acetylation levels of histone H4 at the p16(INK4a) promoter and coding region and lower methylation level of histone H3 lysine-27 in the p16(INK4a) coding region. The increase of p21(Cip1) was associated with increased acetylation of both histone H3 and H4 and decreased trimethylation of histone H3 lysine-27 at the p21(Cip1) promoter. In the p21(Cip1) coding region, dimethylation of histone H3 lysine-4 was significantly higher (P less than 0.05) in livers of OP rats compared with OR rats.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • Raising plasma fatty acid concentration induces increased biogenesis of mitochondria in skeletal muscle. 17548828

    A number of studies have reported that a high-fat diet induces increases in mitochondrial fatty acid oxidation enzymes in muscle. In contrast, in two recent studies raising plasma free fatty acids (FFA) resulted in a decrease in mitochondria. In this work, we reevaluated the effects of raising FFA on muscle mitochondrial biogenesis and capacity for fat oxidation. Rats were fed a high-fat diet and given daily injections of heparin to raise FFA. This treatment induced an increase in mitochondrial biogenesis in muscle, as evidenced by increases in mitochondrial enzymes of the fatty acid oxidation pathway, citrate cycle, and respiratory chain, with an increase in the capacity to oxidize fat, as well as an increase in mitochondrial DNA copy number. Raising FFA also resulted in an increase in binding of peroxisome proliferator-activated receptor (PPAR) delta to the PPAR response element on the carnitine palmitoyltransferase 1 promoter. We interpret our results as evidence that raising FFA induces an increase in mitochondrial biogenesis in muscle by activating PPARdelta.
    Tipo de documento:
    Referencia
    Referencia del producto:
    17-371
    Nombre del producto:
    EZ-ChIP™
  • Caloric restriction and gender modulate cardiac muscle mitochondrial H2O2 production and oxidative damage. 17376413

    Gender and diet have an important effect in cardiovascular disease and other aging-associated disorders, whose initiation and/or worsening seem to be delayed in females from different species and in animals subjected to caloric restriction (CR). The aim of the present study was to investigate whether cardiac muscle bioenergetic mitochondrial features could be responsible for these beneficial effects.
    Tipo de documento:
    Referencia
    Referencia del producto:
    S7150
    Nombre del producto:
    OxyBlot Protein Oxidation Detection Kit
  • Perinatal exposure to a high-fat diet is associated with reduced hepatic sympathetic innervation in one-year old male Japanese macaques. 23118937

    Our group recently demonstrated that maternal high-fat diet (HFD) consumption is associated with non-alcoholic fatty liver disease, increased apoptosis, and changes in gluconeogenic gene expression and chromatin structure in fetal nonhuman primate (NHP) liver. However, little is known about the long-term effects that a HFD has on hepatic nervous system development in offspring, a system that plays an important role in regulating hepatic metabolism. Utilizing immunohistochemistry and Real-Time PCR, we quantified sympathetic nerve fiber density, apoptosis, inflammation, and other autonomic components in the livers of fetal and one-year old Japanese macaques chronically exposed to a HFD. We found that HFD exposure in-utero and throughout the postnatal period (HFD/HFD), when compared to animals receiving a CTR diet for the same developmental period (CTR/CTR), is associated with a 1.7 fold decrease in periportal sympathetic innervation, a 5 fold decrease in parenchymal sympathetic innervation, and a 2.5 fold increase in hepatic apoptosis in the livers of one-year old male animals. Additionally, we observed an increase in hepatic inflammation and a decrease in a key component of the cholinergic anti-inflammatory pathway in one-year old HFD/HFD offspring. Taken together, these findings reinforce the impact that continuous exposure to a HFD has in the development of long-term hepatic pathologies in offspring and highlights a potential neuroanatomical basis for hepatic metabolic dysfunction.
    Tipo de documento:
    Referencia
    Referencia del producto:
    Múltiplo
    Nombre del producto:
    Múltiplo
  • FOOD PEPTIDOMICS OF IN VITRO GASTROINTESTINAL DIGESTIONS OF PARTIALLY PURIFIED BOVINE HEMOGLOBIN: LOW-RESOLUTION VERSUS HIGH-RESOLUTION LC-MS/MS ANALYSES 26990205

    Consumers and governments have become aware how the daily diet may affect the human health. All proteins from both plant and animal origins are potential sources of a wide range of bioactive peptides and the large majority of those display health-promoting effects. In the meat production food chain, the slaughterhouse blood is an inevitable co-product and, today, the blood proteins remain underexploited despite their bioactive potentiality. Through a comparative food peptidomics approach we illustrate the impact of resolving power, accuracy, sensitivity, and acquisition speed of low-resolution (LR)- and high-resolution (HR)-LC-ESI-MS/MS on the obtained peptide mappings and discuss the limitations of MS-based peptidomics. From in vitro gastrointestinal digestions of partially purified bovine hemoglobin, we have established the peptide maps of each hemoglobin chain. LR technique (normal bore C18 LC-LR-ESI-MS/MS) allows us to identify without ambiguity 75 unique peptides while the HR approach (nano bore C18 LC-HR-ESI-MS/MS) unambiguously identify more than 950 unique peptides (post-translational modifications included). Herein, the food peptidomics approach using the most performant separation methods and mass spectrometers with high-resolution capabilities appears as a promising source of information to assess the health potentiality of proteins.
    Tipo de documento:
    Referencia
    Referencia del producto:
    C5737
    Nombre del producto:
    ZipTip® Pipette Tips
  • Modification of polycystic kidney disease and fatty acid status by soy protein diet. 10620197

    Modification of polycystic kidney disease and fatty acid status by soy protein diet.Previous studies have demonstrated that soy protein can slow progression of renal injury in the Han:SPRD-cy rat. We undertook a study to establish whether this benefit was independent of any nutritional deprivation, and whether or not it was associated with changes in polyunsaturated fatty acid status that have been previously linked to the anti-inflammatory or antineoplastic potential of soy diets.Male Han:SPRD-cy rats were pair fed a 20% casein or 20% soy protein diet for six weeks from weaning. Tissue was harvested for analysis of cystic change, cell proliferation, macrophage infiltration, and fibrosis. Renal and hepatic tissues were also harvested for lipid analysis using gas chromatography.Animals thrived on both diets. Soy protein feeding was associated with reduced cystic change (4.3 vs. 7.0 mL/kg, P less than 0.0001), epithelial cell proliferation (15.7 vs. 21.0 cells/mm epithelium, P less than 0.0001), macrophage infiltration (25.3 vs. 43.5 cells/high-power field, P less than 0.0001), and fibrosis (0.6 vs. 1.07 mL/kg, P less than 0.0001). The soy diet prevented a significant elevation in serum creatinine in diseased versus normal animals. Soy feeding was associated with higher renal and hepatic linoleic acid content and higher hepatic alpha-linolenic acid, but lower hepatic arachidonic acid content.Isocaloric soy protein feeding ameliorates both epithelial and interstitial changes in the Han:SPRD-cy rat independent of a hypocholesterolemic effect. The histologic benefit is associated with changes in polyunsaturated fatty acid metabolism that may influence both inflammatory and proliferative pathways.
    Tipo de documento:
    Referencia
    Referencia del producto:
    MAB1435
    Nombre del producto:
    Anti-Macrophages/Monocytes Antibody, clone ED-1