Millipore Sigma Vibrant Logo
 

cd73+antibody


9 Results Advanced Search  
Showing
Products (0)
Documents (9)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (5)
  • (4)
Can't Find What You're Looking For?
Contact Customer Service

 
  • «
  • <
  • 1
  • >
  • »
  • Lipid rafts remodeling in estrogen receptor-negative breast cancer is reversed by histone deacetylase inhibitor. 16505096

    Recently, we have found dramatic overexpression of ecto-5'-nucleotidase (or CD73), a glycosylphosphatidylinositol-anchored component of lipid rafts, in estrogen receptor-negative [ER-] breast cancer cell lines and in clinical samples. To find out whether there is a more general shift in expression profile of membrane proteins, we undertook an investigation on the expression of selected membrane and cytoskeletal proteins in aggressive and metastatic breast cancer cells. Our analysis revealed a remarkably uniform shift in expression of a broad range of membrane, cytoskeletal, and signaling proteins in ER- cells. A similar change was found in two in vitro models of transition to ER- breast cancer: drug-resistant Adr2 and c-Jun-transformed clones of MCF-7 cells. Interestingly, similar expression pattern was observed in normal fibroblasts, suggesting the commonality of membrane determinants of invasive cancer cells with normal mesenchymal phenotype. Because a number of investigated proteins are components of lipid rafts, our results suggest that there is a major remodeling of lipid rafts and underlying cytoskeleton in ER- breast cancer. To test whether this broadly defined ER- phenotype could be reversed by treatment with differentiating agent, we treated ER- cells with trichostatin A, an inhibitor of histone deacetylase, and observed reversal of mesenchymal and reappearance of epithelial markers. Changes in gene and protein expression also included increased capacity to generate adenosine and altered expression profile of adenosine receptors. Thus, our results suggest that during transition to invasive breast cancer there is a significant structural reorganization of lipid rafts and underlying cytoskeleton that is reversed upon histone deacetylase inhibition.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Neuroprotective effects of mesenchymal stem cells derived from human embryonic stem cells in transient focal cerebral ischemia in rats. 19209181

    Embryonic mesenchymal stem cells (eMSCs) were first derived from human embryonic stem cells (hESCs) overexpressing green fluorescence protein (GFP). They expressed CD29, CD44, CD73, CD105, CD166 and nestin, but not CD34, CD45, CD106 SSEA-4 or Oct3/4. Twenty million eMSCs in 1 mL of phosphate-buffered saline (PBS) were injected into the femoral veins of spontaneously hypertensive rats after transient middle cerebral artery occlusion. The migration and differentiation of the eMSCs in the ischemic brain were analyzed. The results revealed that eMSCs migrated to the infarction region and differentiated into neurons, which were positive for beta-tubulin III, microtubule-associated protein 2 (MAP2), HuC, neurofilament and human nuclear antibody, and to vascular endothelial cells, which were positive for von Willebrand factor (vWF). The transplanted cells survived in the infarction region for at least 4 weeks. Adhesive removal function significantly improved in the first week after cell transplantation, and rotarod motor function significantly improved starting from the second week. The infarction volume in the eMSC group was significantly smaller than that in the PBS control group at 4 weeks after infusion. The results of this study show that when administered intravenously, eMSCs differentiated into neuronal and endothelial cells, reduced the infarction volume, and improved behavioral functional outcome significantly in transient focal cerebral ischemia.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • An inducible caspase 9 suicide gene to improve the safety of mesenchymal stromal cell therapies. 20506146

    Mesenchymal stromal cells (MSCs) have been infused in hundreds of patients to date, with minimal reported side effects. However, follow-up is limited and long-term side effects are unknown. Because several animal models have raised safety concerns, we sought to develop a system allowing control over the growth and survival of MSCs used therapeutically. We have previously described a suicide system based on an inducible caspase-9 (iCasp9) protein that is activated using a specific chemical inducer of dimerization (CID), analogs of which have been safely tested in a phase I study. Here, we show that MSCs can be easily transduced with this system and selected to high purity (greater than 97%) with clinical grade immunomagnetic procedures. The transduced cells maintain their basic physiology, including expression of surface antigens (such as positivity for CD73, CD90, and CD105, and negativity for hematopoietic markers) and their potential to differentiate into diverse connective tissue lineages (adipocytes, osteoblasts, and chondroblasts). Those cells and their differentiated progeny can be selectively eliminated in vitro or in vivo within 24 hours after exposure to pharmacological levels of CID, with evidence of apoptosis in more than 95% of iCasp9-positive cells. In conclusion, we have developed directed MSC killing to provide a necessary safety mechanism for therapies using progenitor cells. We believe that this approach will become of increasing value as clinical applications for MSCs develop further.
    Document Type:
    Reference
    Product Catalog Number:
    MAB8887
    Product Catalog Name:
    Anti-Collagen Type II Antibody, clone 6B3
  • Multipotent stem cells from trabecular meshwork become phagocytic TM cells. 22297497

    To isolate and characterize stem cells from human trabecular meshwork (TM) and to investigate the potential of these stem cells to differentiate into TM cells.Human trabecular meshwork stem cells (TMSCs) were isolated as side population cells by fluorescence-activated cell sorting or isolated by clonal cultures. Passaged TMSCs were compared with primary TM cells by immunostaining and quantitative RT-PCR. TMSC purity was assessed by flow cytometry and TMSC multipotency was examined by induction of neural cells, adipocytes, keratocytes, or TM cells. Differential gene expression was detected by quantitative RT-PCR, immunostaining, and immunoblotting. TM cell function was evaluated by phagocytic assay using inactivated Staphylococcus aureus bioparticles.Side population and clonal isolated cells expressed stem cell markers ABCG2, Notch1, OCT-3/4, AnkG, and MUC1 but not TM markers AQP1, MGP, CHI3L1, or TIMP3. Passaged TMSCs are a homogeneous population with greater than 95% cells positive to CD73, CD90, CD166, or Bmi1. TMSCs exhibited multipotent ability of differentiation into a variety of cell types with expression of neural markers neurofilament, β-tubulin III, GFAP; or keratocyte-specific markers keratan sulfate and keratocan; or adipocyte markers ap2 and leptin. TMSC readily differentiated into TM cells with phagocytic function and expression of TM markers AQP1, CHI3L1, and TIMP3.TMSCs, isolated as side population or as clones, express specific stem cell markers, are homogeneous and multipotent, with the ability to differentiate into phagocytic TM cells. These cells offer a potential for development of a novel stem cell-based therapy for glaucoma.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The PAF1 complex differentially regulates cardiomyocyte specification. 21338598

    The specification of an appropriate number of cardiomyocytes from the lateral plate mesoderm requires a careful balance of both positive and negative regulatory signals. To identify new regulators of cardiac specification, we performed a phenotype-driven ENU mutagenesis forward genetic screen in zebrafish. In our genetic screen we identified a zebrafish ctr9 mutant with a dramatic reduction in myocardial cell number as well as later defects in primitive heart tube elongation and atrioventricular boundary patterning. Ctr9, together with Paf1, Cdc73, Rtf1 and Leo1, constitute the RNA polymerase II associated protein complex, PAF1. We demonstrate that the PAF1 complex (PAF1C) is structurally conserved among zebrafish and other metazoans and that loss of any one of the components of the PAF1C results in abnormal development of the atrioventricular boundary of the heart. However, Ctr9, Cdc73, Paf1 and Rtf1, but not Leo1, are required for the specification of an appropriate number of cardiomyocytes and elongation of the heart tube. Interestingly, loss of Rtf1 function produced the most severe defects, resulting in a nearly complete absence of cardiac precursors. Based on gene expression analyses and transplantation studies, we found that the PAF1C regulates the developmental potential of the lateral plate mesoderm and is required cell autonomously for the specification of cardiac precursors. Our findings demonstrate critical but differential requirements for PAF1C components in zebrafish cardiac specification and heart morphogenesis.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • «
  • <
  • 1
  • >
  • »