Millipore Sigma Vibrant Logo
 

cell+signaling+technology


184 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Cell cycle regulation in mouse heart during embryonic and postnatal stages. 22957921

    The regulation of cardiomyocyte proliferation is important for heart development and function. Proliferation levels of mouse cardiomyocytes are high during early embryogenesis and start to decrease at midgestation. Many cardiomyocytes undergo mitosis without cytokinesis, resulting in binucleated cardiomyocytes during early postnatal stages, following which the cell cycle arrests irreversibly. It remains unknown how the proliferation pattern is regulated, and how the irreversible cell cycle arrest occurs. To clarify the mechanisms, fundamental information about cell cycle regulators in cardiomyocytes and cell cycle patterns during embryonic and postnatal stages is necessary. Here, we show that the expression, complex formation, and activity of main cyclins and cyclin-dependent kinases (CDKs) changed in a synchronous manner during embryonic and postnatal stages. These levels decreased from midgestation to birth, and then showed one wave in which the peak was around postnatal day 5. Detailed analysis of the complexes suggested that CDK activities were inhibited before the protein levels decreased. Analysis of DNA content distribution patterns in mono- and binucleated cardiomyocytes after birth revealed changes in cell cycle distribution patterns and the transition from mono- to binucleated cells. These analyses indicated that the wave of cell cycle regulator expression or activities during postnatal stages mainly produced binucleated cells from mononucleated cells. The data obtained should provide a basis for the analysis of cell cycle regulation in cardiomyocytes during embryonic and postnatal stages.
    Document Type:
    Reference
    Product Catalog Number:
    07-687
    Product Catalog Name:
    Anti-Cyclin E Antibody
  • Cell type-specific targeting dissociates the therapeutic from the adverse effects of protein kinase inhibition in allergic skin disease. 22615377

    The kinase p38α, originally identified because of its endotoxin- and cytokine-inducible activity and affinity for antiinflammatory compounds, has been posited as a promising therapeutic target for various immune-mediated disorders. In clinical trials, however, p38α inhibitors produced adverse skin reactions and other toxic effects that often outweighed their benefits. Such toxicity may arise from a perturbation of physiological functions unrelated to or even protective against the disease being treated. Here, we show that the effect of interfering with p38α signaling can be therapeutic or adverse depending on the targeted cell type. Using a panel of mutant mice devoid of p38α in distinct cell types and an experimental model of allergic skin disease, we find that dendritic cell (DC)-intrinsic p38α function is crucial for both antigen-specific T-cell priming and T-cell-mediated skin inflammation, two independent processes essential for the immunopathogenesis. By contrast, p38α in other cell types serves to prevent excessive inflammation or maintain naïve T-cell pools in the peripheral lymphoid tissues. These findings highlight a dilemma in the clinical use of p38α inhibitors, yet also suggest cell-selective targeting as a potential solution for improving their therapeutic index.
    Document Type:
    Reference
    Product Catalog Number:
    04-384
  • Collective cell migration requires suppression of actomyosin at cell-cell contacts mediated by DDR1 and the cell polarity regulators Par3 and Par6. 21170030

    Collective cell migration occurs in a range of contexts: cancer cells frequently invade in cohorts while retaining cell-cell junctions. Here we show that collective invasion by cancer cells depends on decreasing actomyosin contractility at sites of cell-cell contact. When actomyosin is not downregulated at cell-cell contacts, migrating cells lose cohesion. We provide a molecular mechanism for this downregulation. Depletion of discoidin domain receptor 1 (DDR1) blocks collective cancer-cell invasion in a range of two-dimensional, three-dimensional and 'organotypic' models. DDR1 coordinates the Par3/Par6 cell-polarity complex through its carboxy terminus, binding PDZ domains in Par3 and Par6. The DDR1-Par3/Par6 complex controls the localization of RhoE to cell-cell contacts, where it antagonizes ROCK-driven actomyosin contractility. Depletion of DDR1, Par3, Par6 or RhoE leads to increased actomyosin contactility at cell-cell contacts, a loss of cell-cell cohesion and defective collective cell invasion.
    Document Type:
    Reference
    Product Catalog Number:
    07-330
    Product Catalog Name:
    Anti-Partitioning-defective 3 Antibody
  • Cell signaling pathways in the mechanisms of neuroprotection afforded by bergamot essential oil against NMDA-induced cell death in vitro. 17401440

    BACKGROUND AND PURPOSE: The effects of bergamot essential oil (BEO; Citrus bergamia, Risso) on excitotoxic neuronal damage was investigated in vitro. EXPERIMENTAL APPROACH: The study was performed in human SH-SY5Y neuroblastoma cells exposed to N-methyl-D-aspartate (NMDA). Cell viability was measured by dye exclusion. Reactive oxygen species (ROS) and caspase-3 activity were measured fluorimetrically. Calpain I activity and the activation (phosphorylation) of Akt and glycogen synthase kinase-3beta (GSK-3beta) were assayed by Western blotting. KEY RESULTS: NMDA induced concentration-dependent, receptor-mediated, death of SH-SY5Y cells, ranging from 11 to 25% (0.25-5 mM). Cell death induced by 1 mM NMDA (21%) was preceded by a significant accumulation of intracellular ROS and by a rapid activation of the calcium-activated protease calpain I. In addition, NMDA caused a rapid deactivation of Akt kinase and this preceded the detrimental activation of the downstream kinase, GSK-3beta. BEO (0.0005-0.01%) concentration dependently reduced death of SH-SY5Y cells caused by 1 mM NMDA. In addition to preventing ROS accumulation and activation of calpain, BEO (0.01%) counteracted the deactivation of Akt and the consequent activation of GSK-3beta, induced by NMDA. Results obtained by using specific fractions of BEO, suggested that monoterpene hydrocarbons were responsible for neuroprotection afforded by BEO against NMDA-induced cell death. CONCLUSIONS AND IMPLICATIONS: Our data demonstrate that BEO reduces neuronal damage caused in vitro by excitotoxic stimuli and that this neuroprotection was associated with prevention of injury-induced engagement of critical death pathways.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1622
    Product Catalog Name:
    Anti-Spectrin alpha chain (nonerythroid) Antibody, clone AA6
  • p-MAPK1/3 and DUSP6 regulate epididymal cell proliferation and survival in a region-specific manner in mice. 20650883

    A fully developed, functional epididymis is important for male fertility. In particular, it is apparent that without the most proximal region, the initial segment (IS), infertility results. Therefore, it is important to understand the development and regulation of this crucial epididymal region. We have previously shown that many functions of the IS are regulated by luminal fluid factors/lumicrine factors from the testis. This study provides evidence that lumicrine factors activated the ERK pathway only in epithelial cells of the IS from Postnatal Day (P) 14 to P19 and sustained this activation into adulthood. The activated ERK pathway promoted cell proliferation and differentiation in the developing IS, although in the adult, its role was switched to maintain cell survival. To understand further the regulation of cell proliferation in the IS, we examined the role of DUSP6, an MAPK1/3 (ERK1/2) preferred phosphatase that is also regulated by lumicrine factors in the IS. Utilizing Dusp6(-/-) mice, our studies, surprisingly, revealed that Dusp6 was a major regulator of cell proliferation in the caput and corpus regions, whereas components of the ERK pathway, together with PTEN and SRC, were the major regulators of cell proliferation in the IS. We hypothesize that region-specific regulation of cell proliferation is caused by differences in the balance of activities between pro- and antiproliferation signaling pathway components for each epididymal region. An understanding of the mechanisms of cell proliferation may provide clues as to why the epididymis rarely succumbs to cancer.
    Document Type:
    Reference
    Product Catalog Number:
    06-570
    Product Catalog Name:
    Anti-phospho-Histone H3 (Ser10) Antibody, Mitosis Marker
  • Intracellular signaling pathways required for rat vascular smooth muscle cell migration. Interactions between basic fibroblast growth factor and platelet-derived growth f ... 7560082

    Intracellular signaling pathways activated by both PDGF and basic fibroblast growth factor (bFGF) have been implicated in the migration of vascular smooth muscle cells (VSMC), a key step in the pathogenesis of many vascular diseases. We demonstrate here that, while bFGF is a weak chemoattractant for VSMCs, it is required for the PDGF-directed migration of VSMCs and the activation of calcium/calmodulin-dependent protein kinase II (CamKinase II), an intracellular event that we have previously shown to be important in the regulation of VSMC migration. Neutralizing antibodies to bFGF caused a dramatic reduction in the size of the intracellular calcium transient normally seen after PDGF stimulation and inhibited both PDGF-directed VSMC migration and CamKinase II activation. Partially restoring the calcium transient with ionomycin restored migration and CamKinase II activation as did the forced expression of a mutant CamKinase II that had been locked in the active state by site-directed mutagenesis. These results suggest that bFGF links PDGF receptor stimulation to changes in intracellular calcium and CamKinase II activation, reinforcing the central role played by CamKinase II in regulating VSMC migration.
    Document Type:
    Reference
    Product Catalog Number:
    05-117
    Product Catalog Name:
    Anti-FGF-2/basic FGF (neutralizing) Antibody, clone bFM-1
  • R-Ras is required for murine dendritic cell maturation and CD4+ T-cell priming. 22174156

    R-Ras is a member of the RAS superfamily of small GTP-binding proteins. The physiologic function of R-Ras has not been fully elucidated. We found that R-Ras is expressed by lymphoid and nonlymphoid tissues and drastically up-regulated when bone marrow progenitors are induced to differentiate into dendritic cells (DCs). To address the role of R-Ras in DC functions, we generated a R-Ras-deficient mouse strain. We found that tumors induced in Rras(-/-) mice formed with shorter latency and attained greater tumor volumes. This finding has prompted the investigation of a role for R-Ras in the immune system. Indeed, Rras(-/-) mice were impaired in their ability to prime allogeneic and antigen-specific T-cell responses. Rras(-/-) DCs expressed lower levels of surface MHC class II and CD86 in response to lipopolysaccharide compared with wild-type DCs. This was correlated with a reduced phosphorylation of p38 and Akt. Consistently, R-Ras-GTP level was increased within 10 minutes of lipopolysaccharide stimulation. Furthermore, Rras(-/-) DCs have attenuated capacity to spread on fibronectin and form stable immunologic synapses with T cells. Altogether, these findings provide the first demonstration of a role for R-Ras in cell-mediated immunity and further expand on the complexity of small G-protein signaling in DCs.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • MT1-MMP- and Cdc42-dependent signaling co-regulate cell invasion and tunnel formation in 3D collagen matrices. 19934222

    Complex signaling events control tumor invasion in three-dimensional (3D) extracellular matrices. Recent evidence suggests that cells utilize both matrix metalloproteinase (MMP)-dependent and MMP-independent means to traverse 3D matrices. Herein, we demonstrate that lysophosphatidic-acid-induced HT1080 cell invasion requires membrane-type-1 (MT1)-MMP-mediated collagenolysis to generate matrix conduits the width of a cellular nucleus. We define these spaces as single-cell invasion tunnels (SCITs). Once established, cells can migrate within SCITs in an MMP-independent manner. Endothelial cells, smooth muscle cells and fibroblasts also generate SCITs during invasive events, suggesting that SCIT formation represents a fundamental mechanism of cellular motility within 3D matrices. Coordinated cellular signaling events are required during SCIT formation. MT1-MMP, Cdc42 and its associated downstream effectors such as MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) and Pak4 (p21 protein-activated kinase 4), protein kinase Calpha and the Rho-associated coiled-coil-containing protein kinases (ROCK-1 and ROCK-2) coordinate signaling necessary for SCIT formation. Finally, we show that MT1-MMP and Cdc42 are fundamental components of a co-associated invasion-signaling complex that controls directed single-cell invasion of 3D collagen matrices.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3211
  • Glycogen synthase kinase 3 regulates PAX3-FKHR-mediated cell proliferation in human alveolar rhabdomyosarcoma cells. 19995556

    Patients with alveolar rhabdomyosarcoma (ARMS) have poorer response to conventional chemotherapy and lower survival rates than those with embryonal RMS (ERMS). To identify compounds that preferentially block the growth of ARMS, we conducted a small-scale screen of 160 kinase inhibitors against the ARMS cell line Rh30 and ERMS cell line RD and identified inhibitors of glycogen synthase kinase 3 (GSK3), including TWS119 as ARMS-selective inhibitors. GSK3 inhibitors inhibited cell proliferation and induced apoptosis more effectively in Rh30 than RD cells. Ectopic expression of fusion protein PAX3-FKHR in RD cells significantly increased their sensitivity to TWS119. Down-regulation of GSK3 by GSK3 inhibitors or siRNA significantly reduced the transcriptional activity of PAX3-FKHR. These results suggest that GSK3 is directly involved in regulating the transcriptional activity of PAX3-FKHR. Also, GSK3 phosphorylated PAX3-FKHR in vitro, suggesting that GSK3 might regulate PAX3-FKHR activity via phosphorylation. These findings support a novel mechanism of PAX3-FKHR regulation by GSK3 and provide a novel strategy to develop GSK inhibitors as anti-ARMS therapies.
    Document Type:
    Reference
    Product Catalog Number:
    05-412
    Product Catalog Name:
    Anti-GSK3 Antibody, clone 4G-1E
  • Statins inhibit T-acute lymphoblastic leukemia cell adhesion and migration through Rap1b. 21233409

    Statins are known to inhibit signaling of Ras superfamily GTPases and reduce T cell adhesion to ICAM-1. Here, we address the hypothesis that statins affect T cell adhesion and migration by modulating the function of specific GTPases. Statins inhibit the synthesis of mevalonic acid, which is required for farnesyl and geranylgeranyl isoprenoid synthesis. Ras superfamily GTPases are post-translationally isoprenylated to facilitate their anchorage to membranes, where they function to stimulate signal transduction processes. We demonstrate that 1 μM statin inhibits the adhesion, migration, and chemotaxis of the T-ALL cell line CCRF-CEM and TEM of CCRF-CEM and PEER T-ALL cells, but higher statin concentrations are needed to inhibit adhesion of primary T cells. Similar effects are observed following treatment with GGTI-298 or RNA interference-mediated knockdown of Rap1b but not Rap1a, Rac1, Rac2, RhoA, or Cdc42. Statins also alter Rap1 activity and Rap1b localization. Rap1 levels are higher in primary T cells than T-ALL cells, which could explain their reduced sensitivity to statins. These results demonstrate for the first time that the closely related Rap1a and Rap1b isoforms have different functions and suggest that statins or Rap1b depletion could be used to reduce tissue invasion in T-ALL.
    Document Type:
    Reference
    Product Catalog Number:
    07-604