Our broad portfolio consists of multiplex panels that allow you to choose, within the panel, analytes that best meet your needs. On a separate tab you can choose the premixed cytokine format or a single plex kit.
Cell Signaling Kits & MAPmates™
Choose fixed kits that allow you to explore entire pathways or processes. Or design your own kits by choosing single plex MAPmates™, following the provided guidelines.
The following MAPmates™ should not be plexed together:
-MAPmates™ that require a different assay buffer
-Phospho-specific and total MAPmate™ pairs, e.g. total GSK3β and GSK3β (Ser 9)
-PanTyr and site-specific MAPmates™, e.g. Phospho-EGF Receptor and phospho-STAT1 (Tyr701)
-More than 1 phospho-MAPmate™ for a single target (Akt, STAT3)
-GAPDH and β-Tubulin cannot be plexed with kits or MAPmates™ containing panTyr
.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Select A Species, Panel Type, Kit or Sample Type
To begin designing your MILLIPLEX® MAP kit select a species, a panel type or kit of interest.
Custom Premix Selecting "Custom Premix" option means that all of the beads you have chosen will be premixed in manufacturing before the kit is sent to you.
Catalogue Number
Ordering Description
Qty/Pack
List
This item has been added to favorites.
Species
Panel Type
Selected Kit
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
96-Well Plate
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
Add Additional Reagents (Buffer and Detection Kit is required for use with MAPmates)
Qty
Catalogue Number
Ordering Description
Qty/Pack
List Price
48-602MAG
Buffer Detection Kit for Magnetic Beads
1 Kit
Space Saver Option Customers purchasing multiple kits may choose to save storage space by eliminating the kit packaging and receiving their multiplex assay components in plastic bags for more compact storage.
This item has been added to favorites.
The Product Has Been Added To Your Cart
You can now customize another kit, choose a premixed kit, check out or close the ordering tool.
The inability of chlorine to completely inactivate human bacterial pathogens on whole and fresh-cut produce suggests a need for other antimicrobial washing treatments. Nisin (50 microg/ml) and pediocin (100 AU/ml) individually or in combination with sodium lactate (2%), potassium sorbate (0.02%), phytic acid (0.02%), and citric acid (10 mM) were tested as possible sanitizer treatments for reducing the population of Listeria monocytogenes on cabbage, broccoli, and mung bean sprouts. Cabbage, broccoli, and mung bean sprouts were inoculated with a five-strain cocktail of L. monocytogenes at 4.61, 4.34, and 4.67 log CFU/g, respectively. Inoculated produce was left at room temperature (25 degrees C) for up to 4 h before antimicrobial treatment. Washing treatments were applied to inoculated produce for 1 min, and surviving bacterial populations were determined. When tested alone, all compounds resulted in 2.20- to 4.35-log reductions of L. monocytogenes on mung bean, cabbage, and broccoli, respectively. The combination treatments nisin-phytic acid and nisin-pediocin-phytic acid caused significant (P < 0.05) reductions of L. monocytogenes on cabbage and broccoli but not on mung bean sprouts. Pediocin treatment alone or in combination with any of the organic acid tested was more effective in reducing L. monocytogenes populations than the nisin treatment alone. Although none of the combination treatments completely eliminated the pathogen on the produce, the results suggest that some of the treatments evaluated in this study can be used to improve the microbial safety of fresh-cut cabbage, broccoli, and mung bean sprouts.
Ethylene glycol monomethyl ether (EGME), sulpiride, and atrazine are known ovarian toxicants, which increase progesterone (P4) secretion and induce luteal cell hypertrophy following repeated administration. The aim of this study was to define the pathways by which these compounds exerted their effects on the ovary and hypothalamic-pituitary-gonadal (HPG) axis. In the ovary, changes in the steroidogenic activity of new and old corpora lutea (CL) were addressed. EGME (300 mg/kg), sulpiride (100 mg/kg), or atrazine (300 mg/kg) were orally given daily for four times from proestrus to diestrus in normal cycling rats. Treatment with all chemicals significantly increased serum P4 levels, and EGME as well as sulpiride induced increases in prolactin (PRL) levels. In new CL, at both the gene and the protein levels, all three chemicals upregulated the following steroidogenic factors: scavenger receptor class B type I, steroidogenic acute regulatory protein, P450 cholesterol side-chain cleavage, and 3β-hydroxysteroid dehydrogenase (HSD) and downregulated the luteolytic gene, 20α-HSD. Coadministration of EGME and bromocriptine, a D2 agonist, completely inhibited PRL but not P4 secretion. Additionally, steroidogenic factor expression levels were upregulated, and 20α-HSD level was downregulated in new CL. These results suggest that EGME both directly and indirectly stimulates P4 production in luteal cells, whereas sulpiride elevates P4 through activation of PRL secretion in the pituitary. Atrazine may directly activate new CL by stimulating steroidogenic factor expressions. The present study suggests that multiple pathways mediate the effects of EGME, sulpiride, and atrazine on the HPG axis and luteal P4 production in female rats in vivo.
Anesthetics used in infants and children are implicated in the development of neurocognitive disorders. Although propofol induces neuroapoptosis in developing brain, the underlying mechanisms require elucidation and may have an energetic basis. We studied substrate utilization in immature swine anesthetized with either propofol or isoflurane for 4 hours. Piglets were infused with 13-Carbon-labeled glucose and leucine in the common carotid artery to assess citric acid cycle (CAC) metabolism in the parietal cortex. The anesthetics produced similar systemic hemodynamics and cerebral oxygen saturation by near-infrared spectroscopy. Compared with isoflurane, propofol depleted ATP and glycogen stores. Propofol decreased pools of the CAC intermediates, citrate, and α-ketoglutarate, while markedly increasing succinate along with decreasing mitochondrial complex II activity. Propofol also inhibited acetyl-CoA entry into the CAC through pyruvate dehydrogenase, while promoting glycolytic flux with marked lactate accumulation. Although oxygen supply appeared similar between the anesthetic groups, propofol yielded a metabolic phenotype that resembled a hypoxic state. Propofol impairs substrate flux through the CAC in the immature cerebral cortex. These impairments occurred without systemic metabolic perturbations that typically accompany propofol infusion syndrome. These metabolic abnormalities may have a role in the neurotoxity observed with propofol in the vulnerable immature brain.
We tested whether MC4R null mice display altered gustatory function relative to wild-type controls that may contribute to the characteristic hyperphagia and obesity associated with this gene deletion. Mice were tested for their licking responses to prototypical taste solutions (sucrose, NaCl, quinine, citric acid) in series of daily 30-min sessions in which a range of concentrations of each tastant was available in randomized blocks of 5-s trials. Notwithstanding some minor deviations, the concentration-response functions of the MC4R null and wild-type mice were basically the same for all of the prototypical compounds tested here. Thus, taste-based appetitive and avoidance behavior is expressed in the absence of the MC4 receptor, demonstrating that this critical component in the melanocortin system is not required for normal affective gustatory function to be maintained.