Millipore Sigma Vibrant Logo
 

dhe


14909 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (9,638)
  • (53)
  • (38)
  • (35)
  • (17)
  • Show More

Application Type

  • (1)

Field of Activity

  • (1)
  • (1)
  • (1)
  • (1)
  • (1)

Parameter

  • (1)

Sample

  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • On the species specificity of the interaction of LFA-1 with intercellular adhesion molecules. 2199576

    Species restrictions in immune cell interactions have been demonstrated both in Ag-specific responses of T lymphocytes and the phenomenon of natural attachment. To determine the possible contribution of adhesion receptors to these restrictions, we have studied binding between the murine and human homologues of LFA-1 (CD11a/CD18) and ICAM employing purified human LFA-1 and ICAM-1 (CD54) bound to solid substrates. Murine cell lines bind to purified human LFA-1 through ICAM-1 and at least one other counter-receptor. This provides evidence for multiple counter-receptors for LFA-1 in the mouse as well as in the human. In contrast to binding of murine ICAM-1 to human LFA-1, murine LFA-1 does not bind to human ICAM-1. The species specificity maps to the LFA-1 alpha subunit, because mouse x human hybrid cells expressing the human alpha subunit associated with a mouse beta subunit bind to human ICAM-1, whereas those with a human beta subunit associated with a murine alpha subunit do not. Increased adhesiveness for ICAM-1 stimulated by phorbol esters could be demonstrated for hybrid LFA-1 molecules with human alpha and murine beta subunits.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1397Z
  • DSIF, the Paf1 complex, and Tat-SF1 have nonredundant, cooperative roles in RNA polymerase II elongation. 19952111

    Transcription elongation factor DSIF/Spt4-Spt5 is capable of promoting and inhibiting RNA polymerase II elongation and is involved in the expression of various genes. While it has been known for many years that DSIF inhibits elongation in collaboration with the negative elongation factor NELF, how DSIF promotes elongation is largely unknown. Here, an activity-based biochemical approach was taken to understand the mechanism of elongation activation by DSIF. We show that the Paf1 complex (Paf1C) and Tat-SF1, two factors implicated previously in elongation control, collaborate with DSIF to facilitate efficient elongation. In human cells, these factors are recruited to the FOS gene in a temporally coordinated manner and contribute to its high-level expression. We also show that elongation activation by these factors depends on P-TEFb-mediated phosphorylation of the Spt5 C-terminal region. A clear conclusion emerging from this study is that a set of elongation factors plays nonredundant, cooperative roles in elongation. This study also shows unambiguously that Paf1C, which is generally thought to have chromatin-related functions, is involve directlyd in elongation control.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Loss of the DNA methyltransferase MET1 Induces H3K9 hypermethylation at PcG target genes and redistribution of H3K27 trimethylation to transposons in Arabidopsis thaliana ... 23209430

    Dimethylation of histone H3 lysine 9 (H3K9m2) and trimethylation of histone H3 lysine 27 (H3K27m3) are two hallmarks of transcriptional repression in many organisms. In Arabidopsis thaliana, H3K27m3 is targeted by Polycomb Group (PcG) proteins and is associated with silent protein-coding genes, while H3K9m2 is correlated with DNA methylation and is associated with transposons and repetitive sequences. Recently, ectopic genic DNA methylation in the CHG context (where H is any base except G) has been observed in globally DNA hypomethylated mutants such as met1, but neither the nature of the hypermethylated loci nor the biological significance of this epigenetic phenomenon have been investigated. Here, we generated high-resolution, genome-wide maps of both H3K9m2 and H3K27m3 in wild-type and met1 plants, which we integrated with transcriptional data, to explore the relationships between these two marks. We found that ectopic H3K9m2 observed in met1 can be due to defects in IBM1-mediated H3K9m2 demethylation at some sites, but most importantly targets H3K27m3-marked genes, suggesting an interplay between these two silencing marks. Furthermore, H3K9m2/DNA-hypermethylation at these PcG targets in met1 is coupled with a decrease in H3K27m3 marks, whereas CG/H3K9m2 hypomethylated transposons become ectopically H3K27m3 hypermethylated. Our results bear interesting similarities with cancer cells, which show global losses of DNA methylation but ectopic hypermethylation of genes previously marked by H3K27m3.
    Document Type:
    Reference
    Product Catalog Number:
    07-449
    Product Catalog Name:
    Anti-trimethyl-Histone H3 (Lys27) Antibody
  • Changes in the activity and protein levels of CSF acetylcholinesterases in relation to cognitive function of patients with mild Alzheimer's disease following chronic done ... 16868793

    OBJECTIVES: To evaluate long-term changes in acetylcholinesterase (AChE) activity in CSF and blood following donepezil treatment in relation to the concentration of donepezil and cognition in AD patients. METHODS: CSF or blood (or both) samples of a total of 104 patients with mild AD were used [MMSE score 23 +/- 0.4; age 75 +/- 1 years (mean +/- SEM); n=53 for CSF and n=51 for plasma/red blood cell (RBC) samples]. The patients were treated with 5 or 10 mg/day donepezil and clinically followed for 2 years. The CSF and RBC AChE activities were measured by the Ellman's direct colorimetric assay. Protein levels of two variants of AChE (read-through AChE-R and synaptic AChE-S) were determined by an ELISA-like method. RESULTS: The plasma donepezil concentration was dose-dependent (between 30 and 60 ng/mL in the 5-mg and 10-mg group, respectively). The CSF donepezil concentration was 10 times lower than the plasma level and showed dose- and time-dependent kinetics. The RBC AChE inhibition was moderate (19-29%). CSF AChE-S inhibition was estimated to 30-40% in the 5-mg and 45-55% in the 10-mg group. Positive correlations were observed between the CSF AChE inhibition, an increased protein level of the AChE-R variant and MMSE examination. Patients with high AChE inhibition (>or=45%) showed a stabilized MMSE test result after up to two years, while a significant decline was observed in AD patients with lower AChE inhibition (or=30%). CONCLUSIONS: An increase in the protein level of the AChE-R variant corresponded to a high AChE inhibition in CSF and favored less cognitive deterioration.
    Document Type:
    Reference
    Product Catalog Number:
    MAB303
    Product Catalog Name:
    Anti-Acetylcholinesterase Antibody, clone AE-1
  • Role of the PLDLS-binding cleft region of CtBP1 in recruitment of core and auxiliary components of the corepressor complex. 17967884

    C-terminal binding protein (CtBP) family proteins CtBP1 and CtBP2 are highly homologous transcriptional corepressors and are recruited by a large number of transcription factors to mediate sequence-specific transcriptional repression. In addition to DNA-binding repressors, the nuclear protein complex of CtBP1 consists of enzymatic constituents such as histone deacetylases (HDAC1/2), histone methyl transferases (HMTases; G9a and GLP), and the lysine-specific demethylase (LSD1). Additionally, CtBPs also recruit the components of the sumoylation machinery. The CtBPs contain two different unique structural elements, a hydrophobic cleft, with which factors that contain motifs related to the E1A PLDLS motif bind, and a surface groove that binds with factors containing motifs related to the sequence RRTGXPPXL (RRT motif). By structure-based functional dissection of CtBP1, we show that the PLDLS-binding cleft region functions as the primary recruitment center for DNA-binding factors and for the core and auxiliary enzymatic constituents of the CtBP1 corepressor complex. We identify HDAC1/2, CoREST/LSD1, and Ubc9 (E2) as the core constituents of the CtBP1 complex, and these components interact with the PLDLS cleft region through non-PLDLS interactions. Among the CtBP core constituents, HDACs contribute predominantly to the repression activity of CtBP1. The auxiliary components include an HMTase complex (G9a/Wiz/CDYL) and two SUMO E3 ligases, HPC2 and PIAS1. The interaction of auxiliary components with CtBP1 is excluded by PLDLS (E1A)-mediated interactions. Although monomeric CtBP1 is proficient in the recruiting of both core and auxiliary components, NAD(H)-dependent dimerization is required for transcriptional repression. We also provide evidence that CtBP1 functions as a platform for sumoylation of cofactors.
    Document Type:
    Reference
    Product Catalog Number:
    07-551
    Product Catalog Name:
    Anti-G9a Antibody
  • Binding of the fibronectin-mimetic peptide, PR_b, to alpha5beta1 on pig islet cells increases fibronectin production and facilitates internalization of PR_b functionalize ... 20704278

    Islet transplantation is a promising treatment for type 1 diabetes. Recent studies have demonstrated that human islet allografts can restore insulin independence to patients with this disease. As islet isolation and immunotherapeutic techniques improve, the demand for this cell-based therapy will dictate the need for other sources of islets. Pig islets could provide an unlimited supply for xenotransplantation and have shown promise as an alternative to human islet allografts. However, stresses imposed during islet isolation and transplantation decrease islet viability, leading to loss of graft function. In this study, we investigated the ability of a fibronectin-mimetic peptide, PR_b, which specifically binds to the alpha(5)beta(1) integrin, to re-establish lost extracellular matrix (ECM) around isolated pig islets and increase internalization of liposomes. Confocal microscopy and Western blotting were used to show the presence of the integrin alpha(5)beta(1) on the pig islets on day 0 (day of isolation) as well as on different days of islet culture. Islets cultured in medium supplemented with free PR_b for 48 h were found to have increased levels of ECM fibronectin secretion compared to islets in normal culture conditions. Using confocal microscopy and flow cytometry, we found that PR_b peptide-amphiphile functionalized liposomes delivered to the pig islets internalized into the cells in a PR_b concentration dependent manner and nonfunctionalized liposomes showed minimal internalization. These studies proved that the fibronectin-mimetic peptide, PR_b, is an appropriate peptide bullet for applications involving alpha(5)beta(1) expressing pig islet cells. Fibronectin production stimulated through alpha(5)beta(1) PR_b binding may decrease apoptosis and therefore increase islet viability in culture. In addition, PR_b peptide-amphiphile functionalized liposomes may be used for targeted delivery of different agents to pig islet cells.
    Document Type:
    Reference
    Product Catalog Number:
    AB1945
  • hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. 9288757

    Telomerase, the ribonucleoprotein enzyme that elongates telomeres, is repressed in normal human somatic cells but is reactivated during tumor progression. We report the cloning of a human gene, hEST2, that shares significant sequence similarity with the telomerase catalytic subunit genes of lower eukaryotes. hEST2 is expressed at high levels in primary tumors, cancer cell lines, and telomerase-positive tissues but is undetectable in telomerase-negative cell lines and differentiated telomerase-negative tissues. Moreover, the message is up-regulated concomitant with the activation of telomerase during the immortalization of cultured cells and down-regulated during in vitro cellular differentiation. Taken together, these observations suggest that the induction of hEST2 mRNA expression is required for the telomerase activation that occurs during cellular immortalization and tumor progression.
    Document Type:
    Reference
    Product Catalog Number:
    S7750
  • DC3, the smallest subunit of the Chlamydomonas flagellar outer dynein arm-docking complex, is a redox-sensitive calcium-binding protein. 12920131

    The outer dynein arm-docking complex (ODA-DC) targets the outer dynein arm to its correct binding site on the flagellar axoneme. The Chlamydomonas ODA-DC contains three proteins; loss of any one prevents normal assembly of the outer arm, leading to a slow, jerky swimming phenotype. We showed previously that the smallest ODA-DC subunit, DC3, has four EF-hands (Casey, D. M., Inaba, K., Pazour, G. J., Takada, S., Wakabayashi, K., Wilkerson, C. G., Kamiya, R., and Witman, G. B. (2003) Mol. Biol. Cell 14, 3650-3663). Two of the EF-hands fit the consensus pattern for calcium binding, and one of these contains two cysteine residues within its binding loop. To determine whether the predicted EF-hands are functional, we purified bacterially expressed wild-type DC3 and analyzed its calcium-binding potential in the presence and absence of dithiothreitol and Mg2+. The protein bound one calcium ion with an affinity (Kd) of approximately 1 x 10-5 m. Calcium binding was observed only in the presence of dithiothreitol and thus is redox-sensitive. DC3 also bound Mg2+ at physiological concentrations but with a much lower affinity. Changing the essential glutamate to glutamine in both EF-hands eliminated the calcium binding activity of the bacterially expressed protein. To investigate the role of the EF-hands in vivo, we transformed the modified DC3 gene into a Chlamydomonas insertional mutant lacking DC3. The transformed strain swam normally, assembled a normal number of outer arms, and had a normal photoshock response, indicating that the Glu to Gln mutations did not affect ODA-DC assembly, outer arm assembly, or Ca2+-mediated outer arm activity. Thus, DC3 is a true calcium-binding protein, but the function of this activity remains unknown.
    Document Type:
    Reference
    Product Catalog Number:
    ECM600
    Product Catalog Name:
    uPA Activity Assay Kit
  • LAT: the ZAP-70 tyrosine kinase substrate that links T cell receptor to cellular activation. 9489702

    Despite extensive study, several of the major components involved in T cell receptor-mediated signaling remain unidentified. Here we report the cloning of the cDNA for a highly tyrosine-phosphorylated 36-38 kDa protein, previously characterized by its association with Grb2, phospholipase C-gamma1, and the p85 subunit of phosphoinositide 3-kinase. Deduced amino acid sequence identifies a novel integral membrane protein containing multiple potential tyrosine phosphorylation sites. We show that this protein is phosphorylated by ZAP-70/Syk protein tyrosine kinases leading to recruitment of multiple signaling molecules. Its function is demonstrated by inhibition of T cell activation following overexpression of a mutant form lacking critical tyrosine residues. Therefore, we propose to name the molecule LAT-linker for activation of T cells.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple