Millipore Sigma Vibrant Logo
 

diamino


147 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (77)
  • (21)
  • (5)
  • (2)
  • (1)
  • Show More

Application Type

  • (5)

Field of Activity

  • (3)
  • (1)
  • (1)
  • (1)

Sample

  • (1)
  • (1)
  • (1)
  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Identification of a novel inhibitor of mitogen-activated protein kinase kinase. 9660836

    The compound U0126 (1,4-diamino-2,3-dicyano-1, 4-bis[2-aminophenylthio]butadiene) was identified as an inhibitor of AP-1 transactivation in a cell-based reporter assay. U0126 was also shown to inhibit endogenous promoters containing AP-1 response elements but did not affect genes lacking an AP-1 response element in their promoters. These effects of U0126 result from direct inhibition of the mitogen-activated protein kinase kinase family members, MEK-1 and MEK-2. Inhibition is selective for MEK-1 and -2, as U0126 shows little, if any, effect on the kinase activities of protein kinase C, Abl, Raf, MEKK, ERK, JNK, MKK-3, MKK-4/SEK, MKK-6, Cdk2, or Cdk4. Comparative kinetic analysis of U0126 and the MEK inhibitor PD098059 (Dudley, D. T., Pang, L., Decker, S. J., Bridges, A. J., and Saltiel, A. R. (1995) Proc. Natl. Acad. Sci U. S. A. 92, 7686-7689) demonstrates that U0126 and PD098059 are noncompetitive inhibitors with respect to both MEK substrates, ATP and ERK. We further demonstrate that the two compounds bind to deltaN3-S218E/S222D MEK in a mutually exclusive fashion, suggesting that they may share a common or overlapping binding site(s). Quantitative evaluation of the steady state kinetics of MEK inhibition by these compounds reveals that U0126 has approximately 100-fold higher affinity for deltaN3-S218E/S222D MEK than does PD098059. We further tested the effects of these compounds on the activity of wild type MEK isolated after activation from stimulated cells. Surprisingly, we observe a significant diminution in affinity of both compounds for wild type MEK as compared with the deltaN3-S218E/S222D mutant enzyme. These results suggest that the affinity of both compounds is mediated by subtle conformational differences between the two activated MEK forms. The MEK affinity of U0126, its selectivity for MEK over other kinases, and its cellular efficacy suggest that this compound will serve as a powerful tool for in vitro and cellular investigations of mitogen-activated protein kinase-mediated signal transduction.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Characterization of oxidative guanine damage and repair in mammalian telomeres. 20485567

    8-oxo-7,8-dihydroguanine (8-oxoG) and 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) are among the most common oxidative DNA lesions and are substrates for 8-oxoguanine DNA glycosylase (OGG1)-initiated DNA base excision repair (BER). Mammalian telomeres consist of triple guanine repeats and are subject to oxidative guanine damage. Here, we investigated the impact of oxidative guanine damage and its repair by OGG1 on telomere integrity in mice. The mouse cells were analyzed for telomere integrity by telomere quantitative fluorescence in situ hybridization (telomere-FISH), by chromosome orientation-FISH (CO-FISH), and by indirect immunofluorescence in combination with telomere-FISH and for oxidative base lesions by Fpg-incision/Southern blot assay. In comparison to the wild type, telomere lengthening was observed in Ogg1 null (Ogg1(-/-)) mouse tissues and primary embryonic fibroblasts (MEFs) cultivated in hypoxia condition (3% oxygen), whereas telomere shortening was detected in Ogg1(-/-) mouse hematopoietic cells and primary MEFs cultivated in normoxia condition (20% oxygen) or in the presence of an oxidant. In addition, telomere length abnormalities were accompanied by altered telomere sister chromatid exchanges, increased telomere single- and double-strand breaks, and preferential telomere lagging- or G-strand losses in Ogg1(-/-) mouse cells. Oxidative guanine lesions were increased in telomeres in Ogg1(-/-) mice with aging and primary MEFs cultivated in 20% oxygen. Furthermore, oxidative guanine lesions persisted at high level in Ogg1(-/-) MEFs after acute exposure to hydrogen peroxide, while they rapidly returned to basal level in wild-type MEFs. These findings indicate that oxidative guanine damage can arise in telomeres where it affects length homeostasis, recombination, DNA replication, and DNA breakage repair. Our studies demonstrate that BER pathway is required in repairing oxidative guanine damage in telomeres and maintaining telomere integrity in mammals.
    Document Type:
    Reference
    Product Catalog Number:
    16-193
    Product Catalog Name:
    Anti-phospho-Histone H2A.X (Ser139) Antibody, clone JBW301, biotin conjugate
  • Wnt-5a induces Dishevelled phosphorylation and dopaminergic differentiation via a CK1-dependent mechanism. 17244647

    Previously, we have shown that Wnt-5a strongly regulates dopaminergic neuron differentiation by inducing phosphorylation of Dishevelled (Dvl). Here, we identify additional components of the Wnt-5a-Dvl pathway in dopaminergic cells. Using in vitro gain-of-function and loss-of-function approaches, we reveal that casein kinase 1 (CK1) delta and CK1epsilon are crucial for Dvl phosphorylation by non-canonical Wnts. We show that in response to Wnt-5a, CK1epsilon binds Dvl and is subsequently phosphorylated. Moreover, in response to Wnt-5a or CK1epsilon, the distribution of Dvl changed from punctate to an even appearance within the cytoplasm. The opposite effect was induced by a CK1epsilon kinase-dead mutant or by CK1 inhibitors. As expected, Wnt-5a blocked the Wnt-3a-induced activation of beta-catenin. However, both Wnt-3a and Wnt-5a activated Dvl2 by a CK1-dependent mechanism in a cooperative manner. Finally, we show that CK1 kinase activity is necessary for Wnt-5a-induced differentiation of primary dopaminergic precursors. Thus, our data identify CK1 as a component of Wnt-5a-induced signalling machinery that regulates dopaminergic differentiation, and suggest that CK1delta/epsilon-mediated phosphorylation of Dvl is a common step in both canonical and non-canonical Wnt signalling.
    Document Type:
    Reference
    Product Catalog Number:
    AB1603
    Product Catalog Name:
    Anti-Phosphoserine Antibody
  • Beclomethasone dipropionate and formoterol reduce oxidative/nitrosative stress generated by cigarette smoke extracts and IL-17A in human bronchial epithelial cells. 23969332

    Interleukin-17A (IL-17A), cigarette smoke and oxidative/nitrosative stress are involved in inflammatory airway diseases, and the mechanisms behind these processes are still poorly understood. We investigated whether recombinant human IL-17A (rhIL-17A), in combination with cigarette smoke extracts (CSE), increases the levels of inducibile nitric oxide synthase (iNOS), reactive oxygen species, nitrotyrosine (NT) and the activation of signal transducer and activator of transcription 1 (STAT-1) in normal human bronchial epithelial cells (16HBE). The effect of beclomethasone dipropionate (BDP), formoterol and their combination was also evaluated. We demonstrated that rhIL-17A or CSE alone increases iNOS expression, reactive oxygen species and NT production and STAT-1 downstream signalling activation in terms of STAT-1ser727 and STAT-1tyr701 phosphorylation. The combination of both stimuli further increased iNOS, ROS, NT and STAT-1ser727 phosphorylation. The silencing of STAT-1 expression partially reduced the levels of iNOS, reactive oxygen species and NT generated by rhIL-17A and inhibited the effect of CSE alone in 16HBE cells. The treatment of the cells with the MEK1/2 inhibitor U0126 (1,4-diamino-2,3-dicyano-1,4-bis (o-aminophenylmercapto butadiene) abolished the expression of iNOS and STAT-1ser727 phosphorylation generated by rhIL-17A. 16HBE treated with BDP or formoterol alone partially suppressed the effect of IL-17A or CSE on ROS, NT, and STAT-1 activation. Furthermore the use of the drugs in combination showed an additive effect in 16HBE. Our findings demonstrate that IL-17A increases oxidative/nitrosative markers, likely via ERK1/2 downstream signalling and STAT-1 pathway activation in human bronchial epithelial cells. BDP and formoterol treatment reduces this effect showing an additive effect used in combination.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Color modification of diaminobenzidine (DAB) precipitation by metallic ions and its application for double immunohistochemistry. 6182185

    Three metallic ions, NiCl2, CoCl2, and CuSO4, were found to modify the color of the normally brown diaminobenzidine (DAB) reaction. The colors ranged from purplish blue (NiCl2), dark blue/bluish black (CoCl2), to greyish blue (CuSO4). We have found that the CoCl2 + DAB is the ion of choice because: 1) it yields a distinct dark blue color that is easily distinguishable from brown DAB; 2) the blue reaction product is very stable throughout the entire staining procedure; and 3) background staining is minimal. These findings can be applied to the double staining technique of two different antigens in the same section. Among three staining procedures discussed, the avidin-biotin peroxidase complex (Co-DAB)-peroxidase-antiperoxidase (DAB) technique produced the best results because: 1) no antibody elution was needed following the avidin-biotin-peroxidase complex procedure when the CoCl2-DAB modification was used; and 2) no background staining occurred.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • High-grade intensification of the end-product of the diaminobenzidine reaction for peroxidase histochemistry. 7061820

    A simple and reliable method is described for the intensification of the end-product of the diaminobenzidine reaction demonstrating peroxidase activity. After completing the diaminobenzidine reaction, the preparations to be intensified are immersed first in thioglycolic acid solution, then in distilled water, and finally in a special physical developer containing silver nitrate.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Activity of D-amino acid oxidase is widespread in the human central nervous system. 24959138

    It has been proposed that D-amino acid oxidase (DAO) plays an essential role in degrading D-serine, an endogenous coagonist of N-methyl-D-aspartate (NMDA) glutamate receptors. DAO shows genetic association with amyotrophic lateral sclerosis (ALS) and schizophrenia, in whose pathophysiology aberrant metabolism of D-serine is implicated. Although the pathology of both essentially involves the forebrain, in rodents, enzymatic activity of DAO is hindbrain-shifted and absent in the region. Here, we show activity-based distribution of DAO in the central nervous system (CNS) of humans compared with that of mice. DAO activity in humans was generally higher than that in mice. In the human forebrain, DAO activity was distributed in the subcortical white matter and the posterior limb of internal capsule, while it was almost undetectable in those areas in mice. In the lower brain centers, DAO activity was detected in the gray and white matters in a coordinated fashion in both humans and mice. In humans, DAO activity was prominent along the corticospinal tract, rubrospinal tract, nigrostriatal system, ponto-/olivo-cerebellar fibers, and in the anterolateral system. In contrast, in mice, the reticulospinal tract and ponto-/olivo-cerebellar fibers were the major pathways showing strong DAO activity. In the human corticospinal tract, activity-based staining of DAO did not merge with a motoneuronal marker, but colocalized mostly with excitatory amino acid transporter 2 and in part with GFAP, suggesting that DAO activity-positive cells are astrocytes seen mainly in the motor pathway. These findings establish the distribution of DAO activity in cerebral white matter and the motor system in humans, providing evidence to support the involvement of DAO in schizophrenia and ALS. Our results raise further questions about the regulation of D-serine in DAO-rich regions as well as the physiological/pathological roles of DAO in white matter astrocytes.
    Document Type:
    Reference
    Product Catalog Number:
    AB1783
    Product Catalog Name:
    Anti-Glutamate Transporter Antibody, Glial
  • Synthetic D-amino acid peptide inhibits tumor cell motility on laminin-5. 16537560

    Cell motility is partially dependent on interactions between the integrins and the extracellular matrix. Our previous studies have identified synthetic D-amino acid cell adhesion peptides using a combinatorial screening approach. In this study, we demonstrate that HYD1 (kikmviswkg) completely blocks random haptotactic migration and inhibits invasion of prostate carcinoma cells on laminin-5. This effect is adhesion independent and reversible. The inhibition of migration by HYD1 involves a dramatic remodeling of the actin cytoskeleton resulting in increased stress fiber formation and actin colocalization with cortactin at the cell membrane. HYD1 interacts with alpha6beta1 (not alpha6beta4) and alpha3beta1 integrins and surprisingly elevates laminin-5-dependent intracellular signals including focal adhesion kinase, mitogen-activated protein kinase kinase and extracellular signal-regulated kinase. HYD1 does not contain a previously characterized binding sequence for integrins. A scrambled derivative of HYD1, called HYDS (wiksmkivkg), does not interact with the alpha6 or alpha3 integrin subunits and is not biologically active. Taken together, these results indicate that HYD1 is a biologically active integrin-targeting peptide that reversibly inhibits tumor cell migration on laminin-5 and uncouples phosphotyrosine signaling from cytoskeletal-dependent migration.
    Document Type:
    Reference
    Product Catalog Number:
    AB1920
    Product Catalog Name:
    Anti-Integrin α3 Antibody