Millipore Sigma Vibrant Logo
 

general-particulate-removal


3366 Results Advanced Search  
Showing
Products (0)
Documents (3,366)
Site Content (0)

Narrow Your Results Use the filters below to refine your search

Document Type

  • (3,199)
  • (134)
  • (10)
  • (9)
  • (6)
  • Show More

Application Type

  • (8)
  • (2)

Field of Activity

  • (4)
  • (2)
  • (2)
  • (1)
  • (1)
  • Show More

Parameter

  • (10)

Sample

  • (2)
  • (1)
  • (1)
  • (1)
  • (1)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • A novel site of adult doublecortin expression: neuropeptide neurons within the suprachiasmatic nucleus circadian clock. 18177494

    The mammalian suprachiasmatic nucleus (SCN) is composed of heterogeneous sub-groups of neurons that are organized into a neural system for the control of circadian physiology and behaviour. Molecular circadian 'clocks' are not an exclusive property of SCN neurons but the unique role of the SCN as a central integrative pacemaker is associated with specialized aspects of neuronal organization. Current studies are aimed at identifying the functional components of this hypothalamic integrative centre.In the present study we have identified and characterized a quite novel aspect of SCN neurobiology, doublecortin (DCX) protein expression within a defined group of adult rat SCN neurons. Adult neuronal DCX expression is surprising because this microtubule-associated protein (MAP) is generally a developmentally restricted component of immature, migrating neurons. We have also demonstrated for the first time that the SCN as a whole exhibits low expression of the neuronal differentiation marker NeuN. However, DCX is co-localized with NeuN in the ventral SCN, and also with neuropeptides; DCX is extensively co-localized with GRP and partially co-localized with VIP.The highly selective expression of DCX in the adult SCN compared with other hypothalamic and thalamic nuclei shows that this MAP is somewhat uniquely required in certain SCN neurons, perhaps contributing to a specific functional property of the brain's circadian clock nucleus. DCX may maintain a capacity for dynamic cellular plasticity that subserves daily alterations in SCN neuronal signalling.
    Document Type:
    Reference
    Product Catalog Number:
    MAB377
    Product Catalog Name:
    Anti-NeuN Antibody, clone A60
  • A Site of Vulnerability on the Influenza Virus Hemagglutinin Head Domain Trimer Interface 31100268

    Here, we describe the discovery of a naturally occurring human antibody (Ab), FluA-20, that recognizes a new site of vulnerability on the hemagglutinin (HA) head domain and reacts with most influenza A viruses. Structural characterization of FluA-20 with H1 and H3 head domains revealed a novel epitope in the HA trimer interface, suggesting previously unrecognized dynamic features of the trimeric HA protein. The critical HA residues recognized by FluA-20 remain conserved across most subtypes of influenza A viruses, which explains the Ab's extraordinary breadth. The Ab rapidly disrupted the integrity of HA protein trimers, inhibited cell-to-cell spread of virus in culture, and protected mice against challenge with viruses of H1N1, H3N2, H5N1, or H7N9 subtypes when used as prophylaxis or therapy. The FluA-20 Ab has uncovered an exceedingly conserved protective determinant in the influenza HA head domain trimer interface that is an unexpected new target for anti-influenza therapeutics and vaccines.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • The active site cysteine of the proapoptotic protein glyceraldehyde-3-phosphate dehydrogenase is essential in oxidative stress-induced aggregation and cell death. 17613523

    Recent studies have revealed that the redox-sensitive glycolytic enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), is involved in neuronal cell death that is triggered by oxidative stress. GAPDH is locally deposited in disulfide-bonded aggregates at lesion sites in certain neurodegenerative diseases. In this study, we investigated the molecular mechanism that underlies oxidative stress-induced aggregation of GAPDH and the relationship between structural abnormalities in GAPDH and cell death. Under nonreducing in vitro conditions, oxidants induced oligomerization and insoluble aggregation of GAPDH via the formation of intermolecular disulfide bonds. Because GAPDH has four cysteine residues, including the active site Cys(149), we prepared the cysteine-substituted mutants C149S, C153S, C244A, C281S, and C149S/C281S to identify which is responsible for disulfide-bonded aggregation. Whereas the aggregation levels of C281S were reduced compared with the wild-type enzyme, neither C149S nor C149S/C281S aggregated, suggesting that the active site cysteine plays an essential role. Oxidants also caused conformational changes in GAPDH concomitant with an increase in beta-sheet content; these abnormal conformations specifically led to amyloid-like fibril formation via disulfide bonds, including Cys(149). Additionally, continuous exposure of GAPDH-overexpressing HeLa cells to oxidants produced disulfide bonds in GAPDH leading to both detergent-insoluble and thioflavin-S-positive aggregates, which were associated with oxidative stress-induced cell death. Thus, oxidative stresses induce amyloid-like aggregation of GAPDH via aberrant disulfide bonds of the active site cysteine, and the formation of such abnormal aggregates promotes cell death.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • CTCF binding site sequence differences are associated with unique regulatory and functional trends during embryonic stem cell differentiation. 24121688

    CTCF (CCCTC-binding factor) is a highly conserved multifunctional DNA-binding protein with thousands of binding sites genome-wide. Our previous work suggested that differences in CTCF's binding site sequence may affect the regulation of CTCF recruitment and its function. To investigate this possibility, we characterized changes in genome-wide CTCF binding and gene expression during differentiation of mouse embryonic stem cells. After separating CTCF sites into three classes (LowOc, MedOc and HighOc) based on similarity to the consensus motif, we found that developmentally regulated CTCF binding occurs preferentially at LowOc sites, which have lower similarity to the consensus. By measuring the affinity of CTCF for selected sites, we show that sites lost during differentiation are enriched in motifs associated with weaker CTCF binding in vitro. Specifically, enrichment for T at the 18(th) position of the CTCF binding site is associated with regulated binding in the LowOc class and can predictably reduce CTCF affinity for binding sites. Finally, by comparing changes in CTCF binding with changes in gene expression during differentiation, we show that LowOc and HighOc sites are associated with distinct regulatory functions. Our results suggest that the regulatory control of CTCF is dependent in part on specific motifs within its binding site.
    Document Type:
    Reference
    Product Catalog Number:
    07-729
    Product Catalog Name:
    Anti-CTCF Antibody
  • The ATP binding site of the chromatin remodeling homolog Lsh is required for nucleosome density and de novo DNA methylation at repeat sequences. 25578963

    Lsh, a chromatin remodeling protein of the SNF2 family, is critical for normal heterochromatin structure. In particular, DNA methylation at repeat elements, a hallmark of heterochromatin, is greatly reduced in Lsh(-/-) (KO) cells. Here, we examined the presumed nucleosome remodeling activity of Lsh on chromatin in the context of DNA methylation. We found that dynamic CG methylation was dependent on Lsh in embryonic stem cells. Moreover, we demonstrate that ATP function is critical for de novo methylation at repeat sequences. The ATP binding site of Lsh is in part required to promote stable association of the DNA methyltransferase 3b with the repeat locus. By performing nucleosome occupancy assays, we found distinct nucleosome occupancy in KO ES cells compared to WT ES cells after differentiation. Nucleosome density was restored to wild-type level by re-expressing wild-type Lsh but not the ATP mutant in KO ES cells. Our results suggest that ATP-dependent nucleosome remodeling is the primary molecular function of Lsh, which may promote de novo methylation in differentiating ES cells.
    Document Type:
    Reference
    Product Catalog Number:
    17-371
    Product Catalog Name:
    EZ-ChIP™
  • Harvest site influences the growth properties of adipose derived stem cells. 23095943

    The therapeutic potential of adult stem cells may become a relevant option in clinical care in the future. In hand and plastic surgery, cell therapy might be used to enhance nerve regeneration and help surgeons and clinicians to repair debilitating nerve injuries. Adipose-derived stem cells (ASCs) are found in abundant quantities and can be harvested with a low morbidity. In order to define the optimal fat harvest location and detect any potential differences in ASC proliferation properties, we compared biopsies from different anatomical sites (inguinal, flank, pericardiac, omentum, neck) in Sprague-Dawley rats. ASCs were expanded from each biopsy and a proliferation assay using different mitogenic factors, basic fibroblast growth factor (bFGF) and platelet-derived growth factor (PDGF) was performed. Our results show that when compared with the pericardiac region, cells isolated from the inguinal, flank, omental and neck regions grow significantly better in growth medium alone. bFGF significantly enhanced the growth rate of ASCs isolated from all regions except the omentum. PDGF had minimal effect on ASC proliferation rate but increases the growth of ASCs from the neck region. Analysis of all the data suggests that ASCs from the neck region may be the ideal stem cell sources for tissue engineering approaches for the regeneration of nervous tissue.
    Document Type:
    Reference
    Product Catalog Number:
    MAB353
    Product Catalog Name:
    Anti-Nestin Antibody, clone rat-401
  • Length and site of the small intestine exposed to fat influences hunger and food intake. 21736790

    The site of intestinal fat delivery affects satiety and may affect food intake in humans. Animal data suggest that the length of the small intestine exposed to fat is also relevant. The aim of the present study was to investigate whether increasing the areas of intestinal fat exposure and the way it is exposed would affect satiety parameters and food intake. In the present single-blind, randomised, cross-over study, fifteen volunteers, each intubated with a naso-ileal tube, received four treatments on consecutive days. The oral control (control treatment) was a liquid meal (LM) containing 6 g fat ingested at t = 0 min, with saline infusion at t = 30-120 min. Experimental treatments were a fat-free LM at t = 0 min, with either 6 g oil delivered sequentially (2 g duodenal, t = 30-60 min; 2 g jejunal, t = 60-90 min; 2 g ileal, t = 90-120 min), simultaneously (2 g each to all sites, t = 30-120 min) or ileal only (6 g ileal, t = 30-120 min). Satiety parameters (hunger and fullness) and cholecystokinin (CCK), glucagon-like peptide-1 (GLP-1), peptide YY (PYY) secretion were measured until t = 180 min, when ad libitum food intake was assessed. Only the ileum treatment reduced food intake significantly over the control treatment. The ileum and simultaneous treatments significantly reduced hunger compared with the control treatment. Compared with control, no differences were observed for PYY, CCK and GLP-1 with regard to 180 min integrated secretion. Ileal fat infusion had the most pronounced effect on food intake and satiety. Increasing the areas of intestinal fat exposure only affected hunger when fat was delivered simultaneously, not sequentially, to the exposed areas. These results demonstrate that ileal brake activation offers an interesting target for the regulation of ingestive behaviour.
    Document Type:
    Reference
    Product Catalog Number:
    PYYT-66HK
    Product Catalog Name:
    Human PYY (Total) RIA