Millipore Sigma Vibrant Logo
 

glutathione


513 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (310)
  • (140)
  • (2)
  • (1)
  • (1)

Application Type

  • (1)

Field of Activity

  • (1)

Sample

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Cellular glutathione peroxidase in human brain: cellular distribution, and its potential role in the degradation of Lewy bodies in Parkinson's disease and dementia with L ... 18853169

    Glutathione peroxidase (GPx-1) is regarded as one of the mammalian cell's main antioxidant enzymes inactivating hydrogen peroxide and protecting against oxidative stress. Using control, Parkinson's disease (PD), and dementia with Lewy bodies tissue (DLB) we have shown that GPx-1 is a 21-kD protein under reducing conditions in all tissues examined but is not in high abundance in human brain. Using immunohistochemistry we have mapped the cellular distribution of GPx-1 and have shown it to be in highest levels in microglia and with lower levels in neurons. Only a trace amount was detectable in astrocytes using immunofluorescence and GPx-1 was not detectable in oligodendrocytes. GPx-1 positive microglia were hypertrophied and more abundant in PD and DLB tissues and were seen to be making multiple contacts with neurons. In some cases neurons containing Lewy bodies were surrounded by microglia. Unstructured Lewy bodies were enveloped with a layer of GPx-1 that was partially colocalized with alpha-synuclein whereas concentric Lewy bodies had discrete deposits of GPx-1 around the periphery which appeared to be involved in the degradation of the Lewy bodies. These results suggest that abnormal alpha-synuclein as found in Lewy bodies produce hydrogen peroxide and these neurons are capable of directing antioxidant enzymes to regions of oxidative stress. These results also suggest that GPx-1 positive microglia are involved in neuroprotection in PD and DLB and that GPx-1 is an important antioxidant enzyme in neuronal defences.
    Document Type:
    Reference
    Product Catalog Number:
    AB5038
    Product Catalog Name:
    Anti-Synuclein α Antibody
  • Glutathione peroxidase-2 and selenium decreased inflammation and tumors in a mouse model of inflammation-associated carcinogenesis whereas sulforaphane effects differed w ... 22180572

    Chronic inflammation and selenium deficiency are considered as risk factors for colon cancer. The protective effect of selenium might be mediated by specific selenoproteins, such as glutathione peroxidases (GPx). GPx-1 and -2 double knockout, but not single knockout mice, spontaneously develop ileocolitis and intestinal cancer. Since GPx2 is induced by the chemopreventive sulforaphane (SFN) via the nuclear factor E2-related factor 2 (Nrf2)/Keap1 system, the susceptibility of GPx2-KO and wild-type (WT) mice to azoxymethane and dextran sulfate sodium (AOM/DSS)-induced colon carcinogenesis was tested under different selenium states and SFN applications. WT and GPx2-KO mice were grown on a selenium-poor, -adequate or -supranutritional diet. SFN application started either 1 week before (SFN4) or along with (SFN3) a single AOM application followed by DSS treatment for 1 week. Mice were assessed 3 weeks after AOM for colitis and Nrf2 target gene expression and after 12 weeks for tumorigenesis. NAD(P)H:quinone oxidoreductases, thioredoxin reductases and glutathione-S-transferases were upregulated in the ileum and/or colon by SFN, as was GPx2 in WT mice. Inflammation scores were more severe in GPx2-KO mice and highest in selenium-poor groups. Inflammation was enhanced by SFN4 in both genotypes under selenium restriction but decreased in selenium adequacy. Total tumor numbers were higher in GPx2-KO mice but diminished by increasing selenium in both genotypes. SFN3 reduced inflammation and tumor multiplicity in both Se-adequate genotypes. Tumor size was smaller in Se-poor GPx2-KO mice. It is concluded that GPx2, although supporting tumor growth, inhibits inflammation-mediated tumorigenesis, but the protective effect of selenium does not strictly depend on GPx2 expression. Similarly, SFN requires selenium but not GPx2 for being protective.
    Document Type:
    Reference
    Product Catalog Number:
    AP307P
    Product Catalog Name:
    Goat Anti-Rabbit IgG Antibody, (H+L) HRP conjugate
  • Glutathione transferases in hepatocyte-like cells derived from human embryonic stem cells. 17346923

    Human embryonic stem cells (hESCs) offer a potential unlimited source for functional human hepatocytes, since hESCs can differentiate into hepatocyte-like cells displaying a characteristic hepatic morphology and expressing several hepatic markers. These hepatocyte-like cells could be used in various human in vitro hepatocyte assays, e.g. as a test system for studying drug metabolism and drug-induced hepatotoxicity. Since the toxic effect of a compound is commonly dependent on biotransformation into metabolites, the presence of drug metabolising enzymes in potential test systems must be evaluated. We have investigated the presence of glutathione transferases (GSTs) in hepatocyte-like cells by immunocytochemistry and Western blotting. Results show that these cells have high levels of GSTA1-1, whereas GSTP1-1 is not present in most cases. GSTM1-1 is detected by immunocytochemistry but not by Western blotting. In addition, GST activity is detected in hepatocyte-like cells at levels comparable to human hepatocytes. These results indicate that the hepatocyte-like cells have characteristics that closely resemble those of human adult hepatocytes.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1281
    Product Catalog Name:
    Anti-Nuclei Antibody, clone 235-1
  • Glutathione S-transferases interact with AMP-activated protein kinase: evidence for S-glutathionylation and activation in vitro. 23741294

    AMP-activated protein kinase (AMPK) is a cellular and whole body energy sensor with manifold functions in regulating energy homeostasis, cell morphology and proliferation in health and disease. Here we apply multiple, complementary in vitro and in vivo interaction assays to identify several isoforms of glutathione S-transferase (GST) as direct AMPK binding partners: Pi-family member rat GSTP1 and Mu-family members rat GSTM1, as well as Schistosoma japonicum GST. GST/AMPK interaction is direct and involves the N-terminal domain of the AMPK β-subunit. Complex formation of the mammalian GSTP1 and -M1 with AMPK leads to their enzymatic activation and in turn facilitates glutathionylation and activation of AMPK in vitro. GST-facilitated S-glutathionylation of AMPK may be involved in rapid, full activation of the kinase under mildly oxidative physiological conditions.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5310
    Product Catalog Name:
    Anti-Glutathione Antibody, clone D8