Millipore Sigma Vibrant Logo
 

merck+millipore


11200 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (6,791)
  • (2,871)
  • (261)
  • (31)
  • (25)
  • Show More
Can't Find What You're Looking For?
Contact Customer Service

 
  • Alpha-synuclein deficiency in the C57BL/6JOlaHsd strain does not modify disease progression in the ME7-model of prion disease. 19879926

    We previously detailed how intrahippocampal inoculation of C57BL/6J mice with murine modified scrapie (ME7) leads to chronic neurodegeneration (Cunningham C, Deacon R, Wells H, Boche D, Waters S, Diniz CP, Scott H, Rawlins JN, Perry VH (2003) Eur J Neurosci 17:2147-2155.). Our characterization of the ME7-model is based on inoculation of this murine modified scrapie agent into C57BL/6J mice from Harlan laboratories. This agent in the C57BL/6J host generates a disease that spans a 24-week time course. The hippocampal pathology shows progressive misfolded prion (PrP(Sc)) deposition, astrogliosis and leads to behavioural dysfunction underpinned by the early synaptic loss that precedes neuronal death. The Harlan C57BL/6J, although widely used as a wild type mouse, are a sub-strain harbouring a spontaneous deletion of alpha-synuclein with the full description C57BL/6JOlaHsd. Recently alpha-synuclein has been shown to ameliorate the synaptic loss in a mouse model lacking the synaptic chaperone CSP-alpha. This opens a potential confound of the ME7-model, particularly with respect to the signature synaptic loss that underpin the physiological and behavioural dysfunction. To investigate if this strain-selective loss of a candidate disease modifier impacts on signature ME7 pathology, we compared cohorts of C57BL/6JOlaHsd (alpha-synuclein negative) with the founder strain from Charles Rivers (C57BL/6JCrl, alpha-synuclein positive). There were subtle changes in behaviour when comparing control animals from the two sub-strains indicating potentially significant consequences for studies assuming neurobiogical identity of both strains. However, there was no evidence that the absence of alpha-synuclein modifies disease. Indeed, accumulation of PrP(Sc), synaptic loss and the behavioural dysfunction associated with the ME7-agent was the same in both genetic backgrounds. Our data suggest that alpha-synuclein deficiency does not contribute to the compartment specific processes that give rise to prion disease mediated synaptotoxicity and neurodegeneration.
    Document Type:
    Reference
    Product Catalog Number:
    MAB368
  • Identification of orexins and cognate receptors in the lacrimal gland of sheep. 22465661

    The aim of the present work was to study, by means of immunohistochemical and RT-PCR techniques, the presence and distribution of immunopositivity for orexin A and B (OXA and OXB) and orexin type 1 and 2 receptors (OX(1)R and OX(2)R) in the lacrimal gland of sheep as well as the gene expressions for prepro-orexin (PPOX) and cognate receptors. In serial sections, positive staining for OXA and OXB were localized in the same nervous fibers within the connective tissue septa. Positive staining for OX(1)R was evidenced in the wall of small arteries while that for OX(2)R was observed in the secretory portion of the acinar gland cells with a characteristic localization in the apical cytoplasm. RT-PCR analysis showed the presence of transcripts for PPOX, OX(1)R and OX(2)R in the sheep lacrimal gland; the gene expression of OX(1)R was two-fold greater (p<0.01) than that of OX(2)R. Taken together the present findings raise intriguing questions on the potential role of the orexinergic system in the regulation of lacrimal gland functions that require further investigations.
    Document Type:
    Reference
    Product Catalog Number:
    AP132B
    Product Catalog Name:
    Goat Anti-Rabbit IgG Antibody, biotin-SP conjugate
  • Relationship between performance at different exercise intensities and skeletal muscle characteristics. 21436467

    The hypothesis investigated whether exercise performance over a broad range of intensities is determined by specific skeletal muscle characteristics. Seven subjects performed 8-10 exhaustive cycle trials at different workloads, ranging from 150 to 700 W (150 min to 20 s). No relationships between the performance times at high and low workloads were observed. A relationship (P less than 0.05) was noticed between the percentage of fast-twitch x fibers and the exercise time at 579 ± 21 W (∼30 s; r(2) = 0.88). Capillary-to-fiber-ratio (r(2): 0.58-0.85) was related (P less than 0.05) to exercise time at work intensities ranging from 395 to 270 W (2.5-21 min). Capillary density was correlated (r(2) = 0.68; P less than 0.05) with the net rate of plasma K(+) accumulation during an ∼3-min bout and was estimated to explain 50-80% (P less than 0.05) of the total variance observed in exercise performances lasting ∼30 s to 3 min. The Na(+)-K(+) pump β(1)-subunit expression was found to account for 13-34% (P less than 0.05) during exhaustive exercise of ∼1-4 min. In conclusion, exercise performance at different intensities is related to specific physiological variables. A large distribution of fast-twitch x fibers may play a role during very intense efforts, i.e., ∼30 s. Muscle capillaries and the Na(+)-K(+) pump β(1)-subunit seem to be important determinants for performance during exhaustive high-intensity exercises lasting between 30 s and 4 min.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple