Millipore Sigma Vibrant Logo
 

merk


460 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (54)
  • (13)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Human cytomegalovirus inhibition by cardiac glycosides: evidence for involvement of the HERG gene. 22777050

    Infection with human cytomegalovirus (HCMV) continues to be a major threat for pregnant women and the immunocompromised population. Although several anti-HCMV therapies are available, the development of new anti-HCMV agents is highly desired. There is growing interest in identifying compounds that might inhibit HCMV by modulating the cellular milieu. Interest in cardiac glycosides (CG), used in patients with congestive heart failure, has increased because of their established anticancer and their suggested antiviral activities. We report that the several CG--digoxin, digitoxin, and ouabain--are potent inhibitors of HCMV at nM concentrations. HCMV inhibition occurred prior to DNA replication, but following binding to its cellular receptors. The levels of immediate early, early, and late viral proteins and cellular NF-κB were significantly reduced in CG-treated cells. The activity of CG in infected cells correlated with the expression of the potassium channel gene, hERG. CMV infection upregulated hERG, whereas CG significantly downregulated its expression. Infection with mouse CMV upregulated mouse ERG (mERG), but treatment with CG did not inhibit virus replication or mERG transcription. These findings suggest that CG may inhibit HCMV by modulating human cellular targets associated with hERG and that these compounds should be studied for their antiviral activities.
    Document Type:
    Reference
    Product Catalog Number:
    MAB810
  • MEK-ERK signaling in adult newt retinal pigment epithelium cells is strengthened immediately after surgical induction of retinal regeneration. 22743657

    Adult newt retinal pigment epithelium (RPE) cells are mitotically quiescent in the physiological condition, but upon a traumatic injury of the neural retina (NR) they re-enter the cell-cycle and eventually regenerate the missing NR. Here, to understand the mechanism underlying the cell-cycle re-entry of RPE cells following NR injury, we first investigated changes in MEK-ERK signaling activity in RPE cells upon removal of the NR (retinectomy) from the eye of living animals, and found that ERK-mediated signaling activity is elevated quickly (in 30min) upon retinectomy. In addition, we found, in in vitro analyses, that immediate early activation of MEK-ERK signaling may occur in RPE cells upon NR injury, intensifying the MEK-ERK signaling itself through up-regulation of the expression of constituent molecules in the pathway, and that 1-h blockade of such early MEK-ERK signaling interferes with the cell-cycle re-entry, which occurs 5-10 days later. Together, these results provide us with insight that elevation of MEK-ERK signaling activity upon NR injury may be a key process for mitotically quiescent RPE cells to re-enter the cell-cycle, leading to retinal regeneration.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5428
    Product Catalog Name:
    Anti-Retinal Pigment Epithelium 65 Antibody
  • MEK-ERK Signaling Dictates DNA-Repair Gene MGMT Expression and Temozolomide Resistance of Stem-Like Glioblastoma Cells via the MDM2-p53 Axis. 21957016

    Overcoming the resistance of glioblastoma cells against temozolomide, the first-line chemotherapeutic agent of choice for newly diagnosed glioblastoma, is a major therapeutic challenge in the management of this deadly brain tumor. The gene encoding O(6) -methylguanine DNA methyltransferase (MGMT), which removes the methyl group attached by temozolomide, is often silenced by promoter methylation in glioblastoma but is nevertheless expressed in a significant fraction of cases and is therefore regarded as one of the most clinically relevant mechanisms of resistance against temozolomide. However, to date, signaling pathways regulating MGMT in MGMT-expressing glioblastoma cells have been poorly delineated. Here in this study, we provide lines of evidence that the mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK)-extracellular signal-regulated kinase (ERK)--murine double minute 2 (MDM2)-p53 pathway plays a critical role in the regulation of MGMT expression, using stem-like glioblastoma cells directly derived from patient tumor samples and maintained in the absence of serum, which not only possess stem-like properties but are also known to phenocopy the characteristics of the original tumors from which they are derived. We show that, in stem-like glioblastoma cells, MEK inhibition reduced MDM2 expression and that inhibition of either MEK or MDM2 resulted in p53 activation accompanied by p53-dependent downregulation of MGMT expression. MEK inhibition rendered otherwise resistant stem-like glioblastoma cells sensitive to temozolomide, and combination of MEK inhibitor and temozolomide treatments effectively deprived stem-like glioblastoma cells of their tumorigenic potential. Our findings suggest that targeting of the MEK-ERK-MDM2-p53 pathway in combination with temozolomide could be a novel and promising therapeutic strategy in the treatment of glioblastoma. STEM CELLS 2011;29:1942-1951.Copyright © 2011 AlphaMed Press.
    Document Type:
    Reference
    Product Catalog Number:
    AB5922
  • The MEK-ERK pathway negatively regulates bim expression through the 3' UTR in sympathetic neurons. 21762482

    Apoptosis plays a critical role during neuronal development and disease. Developing sympathetic neurons depend on nerve growth factor (NGF) for survival during the late embryonic and early postnatal period and die by apoptosis in its absence. The proapoptotic BH3-only protein Bim increases in level after NGF withdrawal and is required for NGF withdrawal-induced death. The regulation of Bim expression in neurons is complex and this study describes a new mechanism by which an NGF-activated signalling pathway regulates bim gene expression in sympathetic neurons.We report that U0126, an inhibitor of the prosurvival MEK-ERK pathway, increases bim mRNA levels in sympathetic neurons in the presence of NGF. We find that this effect is independent of PI3-K-Akt and JNK-c-Jun signalling and is not mediated by the promoter, first exon or first intron of the bim gene. By performing 3' RACE and microinjection experiments with a new bim-LUC+3'UTR reporter construct, we show that U0126 increases bim expression via the bim 3' UTR. We demonstrate that this effect does not involve a change in bim mRNA stability and by using PD184352, a specific MEK1/2-ERK1/2 inhibitor, we show that this mechanism involves the MEK1/2-ERK1/2 pathway. Finally, we demonstrate that inhibition of MEK/ERK signalling independently reduces cell survival in NGF-treated sympathetic neurons.These results suggest that in sympathetic neurons, MEK-ERK signalling negatively regulates bim expression via the 3' UTR and that this regulation is likely to be at the level of transcription. This data provides further insight into the different mechanisms by which survival signalling pathways regulate bim expression in neurons.
    Document Type:
    Reference
    Product Catalog Number:
    AB17003
    Product Catalog Name:
    Anti-Bim Antibody, internal epitope, pan-Bim isoforms
  • Rac1b regulates NT3-stimulated Mek-Erk signaling, directing marrow-isolated adult multilineage inducible (MIAMI) cells toward an early neuronal phenotype. 22061968

    Due to the limitations of neural stem cells to repair neuronal damage in the human brain, alternative approaches of repair using autologous adult stem cells have been examined for direct cell-replacement, or paracrine mediated neuroprotective effects. Human bone marrow-derived stromal cells (hMSCs) are a heterogeneous adult stem cell population with diverse immunomodulatory properties and the potential to differentiate into cells characteristic of all three germ layers. hMSCs are a renewable source of progenitor cells suitable for cell-based tissue repair. The marrow isolated adult multilineage inducible (MIAMI) cells developed by our laboratory are a developmentally immature homogeneous subpopulation of hMSCs that maintain self-renewal potential during ex vivo expansion, efficient differentiation capacity into neuron-like cells in vitro, as well as direct in vivo neuroprotection and functional recovery in animal models of neurological diseases. We now address the early signaling mechanisms regulating the neuron-like differentiation of MIAMI cells in vitro, in response to activation of the neurotrophic tyrosine-kinase receptor, type 3 (NTRK3) via neurotrophin 3 (NT3). We molecularly characterize a novel role for Rac1b mediating the neurogenic potential of MIAMI cells. Rac1b had an overall negative modulatory effect on the NT3-stimulated Mek1/2-Erk1/2 signaling pathway, proneuronal gene expression and neurite-like extensions. Rac1b was required for NT3-stimulated cell proliferation of MIAMI cells, yet was found to repress CCND1 and CCNB1 mRNA expression independent of NT3 stimulation, suggesting a dual neurotrophin dependent/independent function. Differential levels of Rac1b activity in hMSCs may explain the apparent contradictory reports regarding their neurogenic potential. These findings demonstrate the in vitro neurogenic potential of hMSCs as governed by Rac1b during NT3 stimulation.
    Document Type:
    Reference
    Product Catalog Number:
    09-271
    Product Catalog Name:
    Anti-Rac1b Antibody
  • Protein kinase C activates the MEK-ERK pathway in a manner independent of Ras and dependent on Raf. 8798560

    Although the involvement of protein kinase C (PKC) in the activation of the mitogen-activated protein (MAP) kinase pathway has been implicated through experiments using 12-O-tetradecanoylphorbol-13-acetate (TPA), there has been no direct demonstration that PKC activates the MAP kinase pathway. A Raf-dependent intact cell assay system for monitoring the activation of MAPK/ERK kinase (MEK) and extracellular signal-related kinase (ERK) permitted us to evaluate the role of PKC isotypes in MAP kinase activation. Treatment of cells with TPA or epidermal growth factor resulted in the activation of MEK and ERK. The activation of the MAP kinase pathway triggered by epidermal growth factor was completely inhibited by dominant-negative Ras (RasN17), whereas the activation triggered by TPA was not, consistent with previous observations. The introduction of an activated point mutant of PKCdelta, but not PKCalpha or PKCepsilon, resulted in the activation of the MAP kinase pathway. The activation of MEK and ERK by an activated form of PKCdelta requires the presence of c-Raf and is independent of RasN17. These results demonstrate that activation of PKCdelta is sufficient for the activation of MEK and ERK and that the pathway operates in a manner dependent on c-Raf and independent of Ras.
    Document Type:
    Reference
    Product Catalog Number:
    06-182
  • Induction of Krox-24 by endogenous cannabinoid type 1 receptors in Neuro2A cells is mediated by the MEK-ERK MAPK pathway and is suppressed by the phosphatidylinositol 3-k ... 16864584

    Neuro2a cells endogenously express cannabinoid type 1 (CB1) receptors. CB1 stimulation with HU210 activated ERK and induced the transcription factor Krox-24. A functional MEK-ERK pathway is an important requirement for CB1-mediated Krox-24 induction as blockade of MEK signaling by UO126 reduces both basal and CB1-mediated activation of Krox-24. CB1 receptor stimulation did not activate either JNK or p38 MAPK pathways or the pro-proliferation phosphatidylinositol 3-kinase (PI3K)-Akt pathway. However, serum removal or blockade of PI3K signaling by LY294002 transiently stimulated basal Krox-24 expression and increased CB1-mediated induction of Krox-24. This was consistent with a transient increase in pMEK, pERK, and pCREB levels following PI3K blockade. These data demonstrate that CB1-mediated activation of the Krox-24 transcription factor is negatively regulated through the PI3K-Akt pathway and reveals several points of signaling cross-talk between these two important kinase pathways.
    Document Type:
    Reference
    Product Catalog Number:
    06-519
    Product Catalog Name:
    Anti-phospho-CREB (Ser133) Antibody
  • Feedback regulation of the ?2(1) collagen gene via the Mek-Erk signaling pathway. 22131293

    The extracellular matrix (ECM) provides the microenvironment that is pivotal for cell growth, motility, attachment, and differentiation. Advances in cell culture techniques have led to the development of cell-derived ECM model systems that are more reflective of the in vivo architecture of the ECM in tissue. In this study, a fibroblast-derived ECM (fd-ECM) was used to study the feedback regulation of type I collagen synthesis in fibroblasts. Fibroblasts plated on a preformed fd-ECM showed a significant decrease in the production of type I collagen and pro-?2(1) collagen mRNA compared to cells grown in the absence of a matrix. Function-blocking antibodies showed that this downregulation of type I collagen gene expression is mediated via ?2?1 integrin. The use of several kinase inhibitors and a dominant negative ras construct (N17Ras) showed that the matrix-mediated downregulation of COL1A2 occurs via Ras-dependent activation of the MEK/ERK signaling pathway. Deletion analysis of the COL1A2 promoter implicated the region between -375 and -107 as containing a potential matrix responsive element. The use of Sp1 siRNA demonstrated that Sp1 is an important mediator of this feedback inhibition. This study provides some new insights into the feedback regulation of COL1A2 gene expression.
    Document Type:
    Reference
    Product Catalog Number:
    MAB1998
    Product Catalog Name:
    Anti-Integrin α2β1 Antibody, clone BHA2.1
  • MEK inhibitor U0126 reverses protection of axons from Wallerian degeneration independently of MEK-ERK signaling. 24124570

    Wallerian degeneration is delayed when sufficient levels of proteins with NMNAT activity are maintained within axons after injury. This has been proposed to form the basis of 'slow Wallerian degeneration' (Wld (S)), a neuroprotective phenotype conferred by an aberrant fusion protein, Wld(S). Proteasome inhibition also delays Wallerian degeneration, although much less robustly, with stabilization of NMNAT2 likely to play a key role in this mechanism. The pan-MEK inhibitor U0126 has previously been shown to reverse the axon-protective effects of proteasome inhibition, suggesting that MEK-ERK signaling plays a role in delayed Wallerian degeneration, in addition to its established role in promoting neuronal survival. Here we show that whilst U0126 can also reverse Wld(S)-mediated axon protection, more specific inhibitors of MEK1/2 and MEK5, PD184352 and BIX02189, have no significant effect on the delay to Wallerian degeneration in either situation, whether used alone or in combination. This suggests that an off-target effect of U0126 is responsible for reversion of the axon protective effects of Wld(S) expression or proteasome inhibition, rather than inhibition of MEK1/2-ERK1/2 or MEK5-ERK5 signaling. Importantly, this off-target effect does not appear to result in alterations in the stabilities of either Wld(S) or NMNAT2.
    Document Type:
    Reference
    Product Catalog Number:
    07-039