Millipore Sigma Vibrant Logo
 

multiplex+kits


114 Results Advanced Search  
Showing
Can't Find What You're Looking For?
Contact Customer Service

 
  • Ghrelin vaccination decreases plasma MCP-1 level in LDLR(-/-)-mice. 19751783

    Ghrelin is a novel peptide hormone having growth hormone releasing activity and many endocrine and metabolic functions. In rats and pigs, ghrelin immunizations have recently been shown to induce an antibody response against ghrelin simultaneously with a decrease in body weight gain. Our aim was to test the role of ghrelin immunization on atherosclerosis and weight gain in mice. LDLR(-/-)-mice (n=36) were immunized with ghrelin-PADRE, PADRE alone and PBS and then placed on a high fat diet for 22 weeks. Weight gain and food intake were followed throughout the study. Acylated and total ghrelin, cytokines and MCP-1 were analyzed from plasma using commercial kits. Stomach ghrelin was assessed using qRT-PCR and immunohistochemistry. Atherosclerosis was determined from aorta and cross-sections at the end of study. Mice immunized with ghrelin-PADRE developed high plasma IgG titers to ghrelin simultaneously with a significant increase in plasma acylated and total ghrelin levels. Plasma MCP-1 levels decreased in mice immunized with ghrelin-PADRE compared to mice immunized with PADRE and PBS. There were no differences in atherosclerosis determined from aorta and cross-sections as well as in body weights and food intake in LDLR(-/-)-mice between the different immunization groups. Our data indicates that ghrelin-PADRE vaccination induces a strong exclusive IgG response to ghrelin and increases plasma acylated and total ghrelin levels in mice. Ghrelin vaccination decreases plasma MCP-1 levels even though no effects on developing signs of atherosclerosis or weight gain in mice were observed.
    Document Type:
    Reference
    Product Catalog Number:
    EZRMI-13K
    Product Catalog Name:
    Rat/Mouse Insulin ELISA
  • Development of multiple cell-based assays for the detection of histone H3 Lys27 trimethylation (H3K27me3). 23992119

    Posttranslational modification of histone proteins in eukaryotes plays an important role in gene transcription and chromatin structure. Dysregulation of the enzymes involved in histone modification has been linked to many cancer forms, making this target class a potential new area for therapeutics. A reliable assay to monitor small-molecule inhibition of various epigenetic enzymes should play a critical role in drug discovery to fight cancer. However, it has been challenging to develop cell-based assays for high-throughput screening (HTS) and compound profiling. Recently, two homogeneous cell-based assay kits using the AlphaLISA(®) and LanthaScreen(®) technologies to detect trimethyl histone H3 Lysine 27 have become commercially available, and a heterogeneous cell assay with modified dissociation-enhanced lanthanide fluorescence immunoassay (DELFIA(®)) format has been reported. To compare their pros and cons, we evaluated, optimized, and validated these three assay formats in three different cell lines and compared their activities with traditional Western blot detection of histone methylation inhibition by using commercial and in-house small-molecule inhibitors. Our data indicate that, although all four formats produced acceptable results, the homogeneous AlphaLISA assay was best suited for HTS and compound profiling due to its wider window and ease of automation. The DELFIA and Western blot assays were useful as validation tools to confirm the cell activities and eliminate potential false-positive compounds.
    Document Type:
    Reference
    Product Catalog Number:
    ABE44
    Product Catalog Name:
    Anti-trimethyl Histone H3 (Lys27) Antibody
  • Follicle-stimulating hormone induces multiple signaling cascades: evidence that activation of Rous sarcoma oncogene, RAS, and the epidermal growth factor receptor are cri ... 17536007

    FSH regulates ovarian granulosa cell differentiation not only by activating adenylyl cyclase and protein kinase A (PKA) but also by other complex mechanisms. Using primary rat granulosa cell cultures, we provide novel evidence that FSH rapidly activates two small GTP-binding proteins RAP1 and RAS. FSH activation of RAP1 requires cAMP-mediated activation of exchange factor activated by cAMP/RAPGEF3 whereas FSH activation of RAS and downstream signaling cascades involves multiple factors. Specifically, FSH activation of RAS required Rous sarcoma oncogene (SRC) family tyrosine kinase (SFK) and epidermal growth factor receptor (EGFR) tyrosine kinase activities but not PKA. FSH-induced phosphorylation of ERK1/2 was blocked by dominant-negative RAS as well as by inhibitors of EGFR tyrosine kinase, metalloproteinases involved in growth factor shedding, and SFKs. In contrast, FSH-induced phosphorylation of protein kinase B (PKB/AKT) and the Forkhead transcription factor, FOXO1a occurred by SFK-dependent but RAS-independent mechanisms. The SFKs, c-SRC and FYN, and the SRC-related tyrosine kinase ABL were present and phosphorylated rapidly in response to FSH. Lastly, the EGF-like factor amphiregulin (AREG) activated RAS and ERK1/2 phosphorylation in granulosa cells by mechanisms that were selectively blocked by an EGFR antagonist but not by an SFK antagonist. However, AREG-mediated phosphorylation of PKB and FOXO1a required both EGFR and SFK activation. Moreover, we show that FSH induces AREG and that activation of the EGFR impacts granulosa cell differentiation and the expression of genes characteristic of the luteal cell phenotype. Thus, FSH orchestrates the coordinate activation of three diverse membrane-associated signaling cascades (adenylyl cyclase, RAS, and SFKs) that converge downstream to activate specific kinases (PKA, ERK1/2, and PKB/FOXO1a) that control granulosa cell function and differentiation.
    Document Type:
    Reference
    Product Catalog Number:
    05-516
    Product Catalog Name:
    Anti-Ras Antibody, clone RAS10
  • Bone marrow stromal cells protect and repair damaged neurons through multiple mechanisms. 18030676

    A surprising shortage of information surrounds the mechanism by which bone marrow stromal cells (BMSC) restore lost neurologic functions when transplanted into the damaged central nervous system. To clarify the issue, the BMSC were cocultured with the neurons using two paradigms: the cell-mixing coculture technique and three-dimensional coculture technique. The green fluorescent protein (GFP)-expressing BMSC were cocultured with the PKH-26-labelled neurons, using cell mixing coculture technique. GFP-positive, PKH-26-negative cells morphologically simulated the neurons and significantly increased the expression of MAP-2, Tuj-1, nestin, and GFAP. GFP/nestin-positive, PKH-26-negative cells increased from 13.6% +/- 6.7% to 32.1% +/- 15.5% over 7 days of coculture. They further enhanced Tuj-1 expression when cocultured with neurons exposed to 100 microM of glutamate for 10 min. About 20-30% of GFP-positive cells became positive for PKH-26 through coculture with the neurons, but the doubly positive cells did not increase when cocultured with glutamate-exposed neurons. Alternatively, the BMSC significantly ameliorated glutamate-induced neuronal damage when cocultured with the three-dimensional coculture technique. The protective effect was more prominent when coculture was started prior to glutamate exposure than when coculture was started just after glutamate exposure. ELISA analysis revealed that the BMSC physiologically produce NGF, BDNF, SDF-1alpha, HGF, TGFbeta-1, and IGF-1 and significantly enhanced the production of NGF and BDNF when cocultured with glutamate-exposed neurons. These findings strongly suggest that the BMSC may protect and repair the damaged neurons through multiple mechanisms, including transdifferentiation, cell fusion, and production of growth factors.
    Document Type:
    Reference
    Product Catalog Number:
    CYT304
  • Role of the non-canonical notch ligand delta-like protein 1 in hormone-producing cells of the adult male mouse pituitary. 21756269

    To better understand the role of the non-canonical Notch ligand delta-like protein 1 (DLK1), in hormone-producing cells, we studied the cell distribution and subcellular localisation of DLK1 in the pituitary of male adult 129/SvJ mice, and analysed the variations in the hormone-producing cells associated with the lack of this gene in Dlk1 knockout mice. The results obtained showed the presence of DLK1-immunoreactive (ir) cells in all hormone-producing cells of the anterior pituitary. Immunoelectron microscopy showed DLK1-ir in the rough endoplasmic reticulum and inside secretory vesicles, suggesting that DLK1 is released together with pituitary hormones. Moreover, we found that prolactin (PRL)-DLK1-ir cells are in intimate contact with follicle-stimulating hormone (FSH)-ir-DLK1-negative cells. In Dlk1 knockout mice, we detected a significantly lower number of gowth hormone (GH)-ir cells, a reduction in the FSH and PRL immunostaining intensity, and a significant decrease in FSH mRNA expression compared to wild-type mice. An increase in pituitary GH mRNA expression and serum leptin levels was also found. These findings provide evidence supporting several regulatory functions of DLK1 in the pituitary gland.
    Document Type:
    Reference
    Product Catalog Number:
    AB940
  • Androgen Receptor Gene Polymorphisms and the Fat-Bone Axis in Young Men and Women. 21940984

    Androgen receptor (AR) CAGn (polyglutamine) and GGNn (polyglycine) repeat polymorphisms determine part of the androgenic effect and may influence adiposity. The association between fat mass, and its regional distribution, with the AR CAGn and GGNn polymorphisms was studied in 319 and 78 physically active non-smoker men and women (mean ± SD: 28.3 ± 7.6 and 24.8 ± 6.2 years old, respectively). The length of CAG and GGN repeats was determined by PCR and fragment analysis, and confirmed by DNA sequencing of selected samples. Men were grouped as CAG short (CAGS) if harbouring repeat lengths ≤21, the rest as CAG long (CAGL). The corresponding cut-off CAG number for women was 22. GGN was considered short (GGNS) if GGN ≤23, the rest as GGN long (GGNL). No association between AR polymorphisms and adiposity or the hormonal variables was observed in men. Neither was there a difference in the studied variables between men harboring CAGL+GGNL, CAGS+GGNS, CAGS+GGNL, and CAGn of whole-cell voltage-clamp, multiple-fluorescence confocal microscopy, dual-immunolabeling electron-microscopy, and optogenetic methods. We show that Ca(v)3.1, T-type Ca(2+) channels can be activated by α3β4 nicotinic acetylcholine receptors (nAChRs) that are located on the synaptic regions of the GABAergic perisomatic-targeting interneuronal axons, including the parvalbumin-expressing cells. Asynchronous, quantal GABA release can be triggered by Ca(2+) influx through presynaptic T-type Ca(2+) channels, augmented by Ca(2+) from internal stores, following focal microiontophoretic activation of the α3β4 nAChRs. The resulting GABA release can inhibit pyramidal cells. The T-type Ca(2+) channel-dependent mechanism is not dependent on, or accompanied by, HVA channel Ca(2+) influx, and is insensitive to agonists of cannabinoid, μ-opioid, or GABA(B) receptors. It may therefore operate in parallel with the normal HVA-dependent processes. The results reveal new aspects of the regulation of GABA transmission and contribute to a deeper understanding of ACh and nicotine actions in CNS.
    Document Type:
    Reference
    Product Catalog Number:
    MAB3420
    Product Catalog Name:
    Anti-Tau-1 Antibody, clone PC1C6
  • Color-coded fluorescence imaging of tumor-host interactions. 17406326

    Fluorescent proteins have the properties of being very bright with high quantum yield and are available in many colors. Tumor-host models consist of transgenic mice expressing green fluorescent protein (GFP) in essentially all cells and tissues or expressing GFP selectively in specific tissues such as blood vessels. Particularly useful are the corresponding nude mice transgenic for GFP expression, as they can accept human tumors. When tumor cells expressing red fluorescent protein are implanted in mice expressing GFP, various types of tumor-host interactions can be observed, including those involving host blood vessels, lymphocytes, tumor-associated fibroblasts, macrophages, dendritic cells and others. The 'color-coded' tumor-host models enable imaging and therefore a deeper understanding of the host cells involved and their function in tumor progression. Approximately 4-8 weeks are needed for these procedures.
    Document Type:
    Reference
    Product Catalog Number:
    CBL1337
    Product Catalog Name:
    Anti-PECAM-1 Antibody, clone 390
  • Rectal taurocholate increases L cell and insulin secretion, and decreases blood glucose and food intake in obese type 2 diabetic volunteers. 22696033

    Glucagon-like peptide-1 (GLP-1) and peptide YY (PYY) are secreted from enteroendocrine L cells in response to numerous stimuli, including bile salts. Both have multiple effects that are potentially useful in treating diabetes and obesity. L cell number and hormone content in the intestine are highest in the rectum in humans. We investigated the effects of intrarectal sodium taurocholate on plasma GLP-1, PYY, insulin and glucose concentrations, and on food intake of a subsequent meal.
    Document Type:
    Reference
    Product Catalog Number:
    EGLP-35K
    Product Catalog Name:
    Glucagon Like Peptide-1 (Active) ELISA
  • Intermittent hypoxia promotes hippocampal neurogenesis and produces antidepressant-like effects in adult rats. 20861371

    Increasing evidence indicates that stimulating hippocampal neurogenesis could provide novel avenues for the treatment of depression, and recent studies have shown that in vitro neurogenesis is enhanced by hypoxia. The aim of this study was to investigate the potential regulatory capacity of an intermittent hypobaric hypoxia (IH) regimen on hippocampal neurogenesis and its possible antidepressant-like effect. Here, we show that IH promotes the proliferation of endogenous neuroprogenitors leading to more newborn neurons in hippocampus in adult rats. Importantly, IH produces antidepressant-like effects in multiple animal models screening for antidepressant activity, including the forced swimming test, chronic mild stress paradigm, and novelty-suppressed feeding test. Hippocampal x-ray irradiation blocked both the neurogenic and behavioral effects of IH, indicating that IH likely produces antidepressant-like effects via promoting neurogenesis in adult hippocampus. Furthermore, IH stably enhanced the expression of BDNF in hippocampus; both the antidepressant-like effect and the enhancement of cell proliferation induced by IH were totally blocked by pharmacological and biological inhibition of BDNF-TrkB (tyrosine receptor kinase B) signaling, suggesting that the neurogenic and antidepressant-like effects of IH may involve BDNF signaling. These observations might contribute to both a better understanding of physiological responses to IH and to developing IH as a novel therapeutic approach for depression.
    Document Type:
    Reference
    Product Catalog Number:
    S7100
    Product Catalog Name:
    ApopTag® Peroxidase In Situ Apoptosis Detection Kit
  • Simultaneous in situ detection of RNA, DNA, and protein using tyramide-coupled immunofluorescence. 15507711

    The use of tyramide-coupled immunofluorescence at the single cell level provides expedient, clean, and sensitive signals for detection of DNA, RNA, or proteins. The principle is based on the ability of horseradish peroxidase (HRP) to cleave tyramides into a free radical species with a very short diffusion radius. The free radicals are then covalently bound to electron-rich moieties such as tyrosine in proteins proximal to the targets. Here we present protocols for tyramide fluorescent in situ hybridization (T-FISH), which detects unique DNA species using DNA probes as short as approx 300-500 bp, or unique RNA species with probes as small as an oligonucleotide. We also present a protocol for tyramide immunofluorescence (T-IF) to detect protein antigens. By combining these protocols with several tyramide-coupled fluorophores, multiple targets can be detected simultaneously in situ, which is ideal for in-depth analyses at the molecular and cellular levels. Finally, we describe the detection of nascent viral RNA transcripts simultaneously with integrated viral genomes or chromosomal domains in single cells or tissue sections.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple