Millipore Sigma Vibrant Logo
 

oxidation


401 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (330)
  • (1)
  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • TIA1 oxidation inhibits stress granule assembly and sensitizes cells to stress-induced apoptosis. 26738979

    Cytoplasmic stress granules (SGs) are multimolecular aggregates of stalled translation pre-initiation complexes that prevent the accumulation of misfolded proteins, and that are formed in response to certain types of stress including ER stress. SG formation contributes to cell survival not only by suppressing translation but also by sequestering some apoptosis regulatory factors. Because cells can be exposed to various stresses simultaneously in vivo, the regulation of SG assembly under multiple stress conditions is important but unknown. Here we report that reactive oxygen species (ROS) such as H2O2 oxidize the SG-nucleating protein TIA1, thereby inhibiting SG assembly. Thus, when cells are confronted with a SG-inducing stress such as ER stress caused by protein misfolding, together with ROS-induced oxidative stress, they cannot form SGs, resulting in the promotion of apoptosis. We demonstrate that the suppression of SG formation by oxidative stress may underlie the neuronal cell death seen in neurodegenerative diseases.
    Document Type:
    Reference
    Product Catalog Number:
    17-700
    Product Catalog Name:
    Magna RIP™ RNA-Binding Protein Immunoprecipitation Kit
  • Oxidation and nitration in dopaminergic areas of the prefrontal cortex from patients with bipolar disorder and schizophrenia. 24485387

    Increased oxidative stress is strongly implicated in bipolar disorder (BD), where protein oxidation, lipid peroxidation and oxidative damage to DNA have been consistently reported. High levels of dopamine (DA) in mania are also well-recognized in patients with BD, and DA produces reactive oxygen species and electron-deficient quinones that can oxidize proteins when it is metabolized.Using immunohistochemistry and acceptor photobleaching Förster resonance energy transfer (FRET), we examined oxidation and nitration of areas immunoreactive for the DA transporter (DAT) and tyrosine hydroxylase (TH) in the postmortem prefrontal cortex from patients with BD, schizophrenia and major depression as well as nonpsychiatric controls.We found increased oxidation of DAT-immunoreactive regions in patients with BD (F3,48 = 6.76, p = 0.001; Dunnett post hoc test p = 0.001) and decreased nitration of TH-immunoreactive regions in both patients with BD (F3,45 = 3.10, p = 0.036; Dunnett post hoc test p = 0.011) and schizophrenia (p = 0.027). On the other hand, we found increased global levels of oxidation in patients with BD (F3,44 = 6.74, p = 0.001; Dunnett post hoc test p = 0.001) and schizophrenia (p = 0.020), although nitration levels did not differ between the groups (F3,46 = 1.75; p = 0.17).Limitations of this study include the use of postmortem brain sections, which may have been affected by factors such as postmortem interval and antemortem agonal states, although demographic factors and postmortem interval were accounted for in our statistical analysis.These findings suggest alterations in levels of protein oxidation and nitration in DA-rich regions of the prefrontal cortex in patients with BD and schizophrenia, but more markedly in those with BD.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Oxidation of HRas cysteine thiols by metabolic stress prevents palmitoylation in vivo and contributes to endothelial cell apoptosis. 22085642

    Here we demonstrate a new paradigm in redox signaling, whereby oxidants resulting from metabolic stress directly alter protein palmitoylation by oxidizing reactive cysteine thiolates. In mice fed a high-fat, high-sucrose diet and in cultured endothelial cells (ECs) treated with high palmitate and high glucose (HPHG), there was decreased HRas palmitoylation on Cys181/184 (61±24% decrease for cardiac tissue and 38±7.0% in ECs). This was due to oxidation of Cys181/184, detected using matrix-assisted laser desorption/ionization time of flight (MALDI TOF)-TOF. Decrease in HRas palmitoylation affected its compartmentalization and Ras binding domain binding activity, with a shift from plasma membrane tethering to Golgi localization. Loss of plasma membrane-bound HRas decreased growth factor-stimulated ERK phosphorylation (84±8.6% decrease) and increased apoptotic signaling (24±6.5-fold increase) after HPHG treatment that was prevented by overexpressing wild-type but not C181/184S HRas. The essential role of HRas in metabolic stress was made evident by the similar effects of expressing an inactive dominant negative N17-HRas or a MEK inhibitor. Furthermore, the relevance of thiol oxidation was demonstrated by overexpressing manganese superoxide dismutase, which improved HRas palmitoylation and ERK phosphorylation, while lessening apoptosis in HPHG treated ECs.
    Document Type:
    Reference
    Product Catalog Number:
    05-516
    Product Catalog Name:
    Anti-Ras Antibody, clone RAS10
  • Protein oxidation implicated as the primary determinant of bacterial radioresistance. 17373858

    In the hierarchy of cellular targets damaged by ionizing radiation (IR), classical models of radiation toxicity place DNA at the top. Yet, many prokaryotes are killed by doses of IR that cause little DNA damage. Here we have probed the nature of Mn-facilitated IR resistance in Deinococcus radiodurans, which together with other extremely IR-resistant bacteria have high intracellular Mn/Fe concentration ratios compared to IR-sensitive bacteria. For in vitro and in vivo irradiation, we demonstrate a mechanistic link between Mn(II) ions and protection of proteins from oxidative modifications that introduce carbonyl groups. Conditions that inhibited Mn accumulation or Mn redox cycling rendered D. radiodurans radiation sensitive and highly susceptible to protein oxidation. X-ray fluorescence microprobe analysis showed that Mn is globally distributed in D. radiodurans, but Fe is sequestered in a region between dividing cells. For a group of phylogenetically diverse IR-resistant and IR-sensitive wild-type bacteria, our findings support the idea that the degree of resistance is determined by the level of oxidative protein damage caused during irradiation. We present the case that protein, rather than DNA, is the principal target of the biological action of IR in sensitive bacteria, and extreme resistance in Mn-accumulating bacteria is based on protein protection.
    Document Type:
    Reference
    Product Catalog Number:
    S7150
    Product Catalog Name:
    OxyBlot Protein Oxidation Detection Kit
  • Cysteine oxidation within N-terminal mutant huntingtin promotes oligomerization and delays clearance of soluble protein. 21454633

    Huntington disease (HD) is a progressive neurodegenerative disorder caused by expression of polyglutamine-expanded mutant huntingtin protein (mhtt). Most evidence indicates that soluble mhtt species, rather than insoluble aggregates, are the important mediators of HD pathogenesis. However, the differential roles of soluble monomeric and oligomeric mhtt species in HD and the mechanisms of oligomer formation are not yet understood. We have shown previously that copper interacts with and oxidizes the polyglutamine-containing N171 fragment of huntingtin. In this study we report that oxidation-dependent oligomers of huntingtin form spontaneously in cell and mouse HD models. Levels of these species are modulated by copper, hydrogen peroxide, and glutathione. Mutagenesis of all cysteine residues within N171 blocks the formation of these oligomers. In cells, levels of oligomerization-blocked mutant N171 were decreased compared with native N171. We further show that a subset of the oligomerization-blocked form of glutamine-expanded N171 huntingtin is rapidly depleted from the soluble pool compared with "native " mutant N171. Taken together, our data indicate that huntingtin is subject to specific oxidations that are involved in the formation of stable oligomers and that also delay removal from the soluble pool. These findings show that inhibiting formation of oxidation-dependent huntingtin oligomers, or promoting their dissolution, may have protective effects in HD by decreasing the burden of soluble mutant huntingtin.
    Document Type:
    Reference
    Product Catalog Number:
    MAB5492
    Product Catalog Name:
    Anti-Huntingtin Antibody, a.a. 1-82
  • Advanced oxidation protein products induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK signaling. 23453926

    Advanced oxidation protein products (AOPPs) are formed during chronic oxidative stress as a result of reactions between plasma proteins and chlorinated oxidants. Their levels are elevated during various cardiovascular diseases. Because elevated AOPPs serve as independent risk factors for ischemic heart disease, and cardiomyocyte death is a hallmark of ischemic heart disease, we hypothesized that AOPPs will induce cardiomyocyte death. AOPP-modified mouse serum albumin (AOPP-MSA) induced significant death of neonatal mouse cardiomyocytes that was attenuated by knockdown of the receptor for advanced glycation end products, but not CD36. Notably, TRAF3-interacting protein 2 (TRAF3IP2; also known as CIKS or Act1) knockdown blunted AOPP-induced apoptosis. AOPP-MSA stimulated Nox2/Rac1-dependent superoxide generation, TRAF3IP2 expression, and TRAF3IP2-dependent JNK activation. The superoxide anion generating xanthine/xanthine oxidase system and hydrogen peroxide both induced TRAF3IP2 expression. Further, AOPP-MSA induced mitochondrial Bax translocation and release of cytochrome c into cytoplasm. Moreover, AOPP-MSA suppressed antiapoptotic Bcl-2 and Bcl-xL expression. These effects were reversed by TRAF3IP2 knockdown or forced expression of mutant JNK. Similar to its effects in neonatal cardiomyocytes, AOPP-MSA induced adult cardiomyocyte death in part via TRAF3IP2. These results demonstrate for the first time that AOPPs induce cardiomyocyte death via Nox2/Rac1/superoxide-dependent TRAF3IP2/JNK activation in vitro and suggest that AOPPs may contribute to myocardial injury in vivo. Thus TRAF3IP2 may represent a potential therapeutic target in ischemic heart disease.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Neuronal RNA oxidation is a prominent feature of dementia with Lewy bodies. 12438921

    An approach was used to identify the oxidized nucleoside, 8-hydroxyguanosine in brains of dementia with Lewy bodies. Neurons with marked immunoreaction of 8-hydroxyguanosine in the cytoplasm were widely distributed in the hippocampal region and temporal neocortex. Relative intensity measurements of neuronal 8-hydroxyguanosine immunoreactivity showed that there was a significant increase in nucleic acid oxidation in dementia with Lewy bodies compared with controls. Treatment with nuclease (DNase or RNase) before the immunostaining demonstrated that RNA was a major site of nucleic acid oxidation. Together with the previously reported RNA oxidation in vulnerable neurons in Alzheimer and Parkinson diseases, neuronal RNA oxidation in dementia with Lewy bodies might represent one of the fundamental abnormalities in age-associated neurodegenerative diseases.
    Document Type:
    Reference
    Product Catalog Number:
    AB5038
    Product Catalog Name:
    Anti-Synuclein α Antibody
  • Selective oxidation of methionine residues in prion proteins. 10362513

    Prion proteins are central to the pathogenesis of several neurodegenerative diseases through the postulated conversion of the endogenous cellular isoform (PrPc) into a pathogenic isoform (PrPSc). Although the cellular function of normal prion protein remains unresolved a number of studies have shown that prion proteins may be involved in the cellular response to oxidative stress. Here, using purified recombinant sources of mouse and chicken PrP refolded in the presence of copper (II) we show that the methionine residues of the protein are uniquely susceptible to oxidation. We suggest that Met residues may form an essential part of the mechanism of the antioxidant activity exhibited by normal prion protein.
    Document Type:
    Reference
    Product Catalog Number:
    AB5058
    Product Catalog Name:
    Anti-Prion Protein Antibody, NT, a.a. 78-97
  • Mammalian thioredoxin reductase: oxidation of the C-terminal cysteine/selenocysteine active site forms a thioselenide, and replacement of selenium with sulfur markedly re ... 10688911

    Mammalian cytosolic thioredoxin reductase (TrxR) has a redox center, consisting of Cys(59)/Cys(64) adjacent to the flavin ring of FAD and another center consisting of Cys(497)/selenocysteine (SeCys)(498) near the C terminus. We now show that the C-terminal Cys(497)-SH/SeCys(498)-Se(-) of NADPH-reduced enzyme, after anaerobic dialysis, was converted to a thioselenide on incubation with excess oxidized Trx (TrxS(2)) or H(2)O(2). The Cys(59)-SH/Cys(64)-SH pair also was oxidized to a disulfide. At lower concentrations of TrxS(2), the Cys(59)-SH/Cys(64)-SH center was still converted to a disulfide, presumably by reduction of the thioselenide to Cys(497)-SH/SeCys(498)-Se(-). Specific alkylation of SeCys(498) completely blocked the TrxS(2)-induced oxidation of Cys(59)-SH/Cys(64)-SH, and the alkylated enzyme had negligible NADPH-disulfide oxidoreductase activity. The effect of replacing SeCys(498) with Cys was determined by using a mutant form of human placental TrxR1 expressed in Escherichia coli. The NADPH-disulfide oxidoreductase activity of the purified Cys(497)/Cys(498) mutant enzyme was 6% or 11% of that of wild-type rat liver TrxR1 with 5, 5'-dithiobis(2-nitrobenzoic acid) or TrxS(2), respectively, as substrate. Disulfide formation induced by excess TrxS(2) in the mutant form was 12% of that of the wild type. Thus, SeCys has a critical redox function during the catalytic cycle, which is performed poorly by Cys.
    Document Type:
    Reference
    Product Catalog Number:
    07-613