Millipore Sigma Vibrant Logo
 

peptide


4963 Results Advanced Search  
Showing

Narrow Your Results Use the filters below to refine your search

Document Type

  • (2,286)
  • (1,447)
  • (45)
  • (27)
  • (17)
  • Show More

Analyte

  • (1)

Application Type

  • (1)

General Class

  • (1)

Application Method

  • (1)
  • (1)
  • (1)
  • (1)
  • (1)

Specific Class

  • (1)
Can't Find What You're Looking For?
Contact Customer Service

 
  • Small peptide inhibitor of JNK3 protects dopaminergic neurons from MPTP induced injury via inhibiting the ASK1-JNK3 signaling pathway. 25856433

    The ASK1-JNK3 signaling pathway plays a pivotal role in the pathogenesis of Parkinson's disease (PD). The specific binding of β-arrestin2 to JNK3 is essential for activation of the ASK1-JNK3 cascade, representing a potential therapeutic target for preventing dopaminergic neuronal death in PD. The aim of this study was to identify a novel strategy for the prevention of dopaminergic neuronal death in PD.Based on the specific binding of β-arrestin2 to JNK3, a 21-amino-acid fusion peptide, termed JNK3-N-Tat, was synthesized. We evaluated the ability of this peptide to inhibit the binding of β-arrestin2 to its target domain in JNK3 in vitro and in vivo.The JNK3-N-Tat peptide inhibited activation of the ASK1-JNK3 cascade by disrupting the interaction between β-arrestin2 and JNK3. JNK3-N-Tat exerted beneficial effects through pathways downstream of JNK3 and improved mitochondrial function, resulting in attenuated MPP+/MPTP-induced damage. JNK3-N-Tat protected mesencephalic dopaminergic neurons against MPTP-induced toxicity.JNK3-N-Tat, a JNK3-inhibitory peptide, protects dopaminergic neurons against MPP+/MPTP-induced injury by inhibiting the ASK1-JNK3 signaling pathway.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • A peptide model of basement membrane collagen alpha 1 (IV) 531-543 binds the alpha 3 beta 1 integrin. 7493922

    Tumor cell adhesion to the triple-helical domain of basement membrane (type IV) collagen occurs at several different regions. Cellular recognition of the sequence spanning alpha 1(IV)531-543 has been proposed to be independent of triple-helical conformation (Miles, A. J., Skubitz, A. P. N., Furcht, L. T., and Fields, G. B. (1994) J. Biol. Chem. 269, 30939-30945). In the present study, integrin interactions with a peptide analog of the alpha 1(IV)-531-543 sequence have been analyzed. Tumor cell adhesion (melanoma, ovarian carcinoma) to the alpha 1(IV)531-543 chemically synthesized peptide was inhibited by a monoclonal antibody against the alpha 3 integrin subunit, and to a lesser extent by monoclonal antibodies against the beta 1 and alpha 2 integrin subunits. An anti-alpha 5 monoclonal antibody and normal mouse IgG were ineffective as inhibitors of tumor cell adhesion to the peptide. Two cell surface proteins of 120 and 150 kDa bound to an alpha 1(IV)531-543 peptide affinity column and were eluted with 20 mM EDTA. When the eluted proteins were incubated with monoclonal antibodies against either the alpha 3 or beta 1 integrin subunit, proteins corresponding in molecular weight to alpha 3 and beta 1 integrin subunits were precipitated. No proteins were immunoprecipated with monoclonal antibodies against the alpha 2 or alpha 5 integrin subunits. Thus, the alpha 3 beta 1 integrin from two tumor cell types has been shown to bind directly to the alpha 1 (IV)531-543 peptide. The alpha 1(IV)531-543 peptide is the first collagen-like sequence that has been shown to bind the alpha 3 beta 1 integrin.
    Document Type:
    Reference
    Product Catalog Number:
    Multiple
    Product Catalog Name:
    Multiple
  • Small peptide inhibitor of JNKs protects against MPTP-induced nigral dopaminergic injury via inhibiting the JNK-signaling pathway. 20010851

    Increasing evidence suggests that apoptosis may be the mechanism underlying cell death in selective loss of nigral dopaminergic neurons in Parkinson's disease (PD). Previous studies strongly suggested that c-Jun N-terminal kinase (JNK) signaling pathway has a critical role in the animal model with 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced PD. In this study, we report the inhibitory effect of a peptide designated as Tat-JBD on JNKs activation. The sequence of Tat is corresponding to the cell-membrane transduction domain of human immunodeficiency virus-type 1 (HIV-1) and the sequence of an 11-amino acid peptide is corresponding to the residues of JNK-binding domain (JBD) on JNK-interacting protein-1 (JIP-1). Tat-JBD is confirmed to perturb the assembly of JIP-1-JNKs complex, inhibit the activation of JNKs induced by MPTP and consequently diminish the phosphorylation of c-Jun. It also inhibits the phosphorylation of Bcl-2 and the releasing of Bax from Bcl-2/Bax dimmers, sequentially attenuates the translocation of Bax to mitochondria, the release of cytochrome c, the activation of caspase3 and the hydrolyzation of poly-ADP-ribose-polymerase. The death of dopaminergic neurons and the loss of dopaminergic axon in the striatum were significantly suppressed by infusion of the peptide Tat-JBD in MPTP-treated mice. Our findings imply that Tat-JBD offers neuroprotection against MPTP injury via inhibiting the JNK-signaling pathway, and may provide a promising therapeutic approach for PD.
    Document Type:
    Reference
    Product Catalog Number:
    S7100
    Product Catalog Name:
    ApopTag® Peroxidase In Situ Apoptosis Detection Kit
  • Peptide hormone isoforms: N-terminally branched PYY3-36 isoforms give improved lipid and fat-cell metabolism in diet-induced obese mice. 20853314

    The prevalence of obesity is increasing with an alarming rate worldwide and there is a need for efficacious satiety drugs. PYY3-36 has been shown to play a role in hypothalamic appetite regulation and novel analogs targeting the Y2 receptor have potential as drugs for the treatment of obesity. We have designed a series of novel PYY3-36 isoforms, by first adding the dipeptide Ile-Lys N-terminal to the N(?) of Ser-13 in PYY13-36 and then anchoring the N-terminal segment, e.g. PYY3-12, to the new Lys N(?)-amine. We hypothesized that such modifications would alter the folding of PYY, due to changes in the turn motif, which could change the binding mode to the Y receptor sub-types and possibly also alter metabolic stability. In structure-affinity/activity relationship experiments, one series of PYY isoforms displayed equipotency towards the Y receptors. However, an increased Y2 receptor potency for the second series of PYY isoforms resulted in enhanced Y receptor selectivity compared to PYY3-36. Additionally, acute as well as chronic mice studies showed body-weight-lowering effects for one of the PYY isoforms, which was also reflected in a reduction of circulating leptin levels. Interestingly, while the stability and pharmacokinetic profile of PYY3-36 and the N-terminally modified PYY3-36 analogue were identical, only mice treated with the branched analogue showed marked increases in adiponectin levels as well as reductions in non-esterified free fatty acids and triglycerides.
    Document Type:
    Reference
    Product Catalog Number:
    EZML-82K
    Product Catalog Name:
    Mouse Leptin ELISA
  • On silico peptide microarrays for high-resolution mapping of antibody epitopes and diverse protein-protein interactions. 22902875

    We developed a new, silicon-based peptide array for a broad range of biological applications, including potential development as a real-time point-of-care platform. We used photolithography on silicon wafers to synthesize microarrays (Intel arrays) that contained every possible overlapping peptide within a linear protein sequence covering the N-terminal tail of human histone H2B. These arrays also included peptides with acetylated and methylated lysine residues, reflecting post-translational modifications of H2B. We defined minimum binding epitopes for commercial antibodies recognizing the modified and unmodified H2B peptides. We further found that this platform is suitable for the highly sensitive characterization of methyltransferases and kinase substrates. The Intel arrays also revealed specific H2B epitopes that are recognized by autoantibodies in individuals with systemic lupus erythematosus who have elevated disease severity. By combining emerging nonfluorescence-based detection methods with an underlying integrated circuit, we are now poised to create a truly transformative proteomics platform with applications in bioscience, drug development and clinical diagnostics.
    Document Type:
    Reference
    Product Catalog Number:
    07-751
  • The VPAC2 agonist peptide histidine isoleucine (PHI) up-regulates glutamate transport in the corpus callosum of a rat model of amyotrophic lateral sclerosis (hSOD1G93A) b ... 21730107

    Degeneration of corpus callosum appears in patients with amyotrophic lateral sclerosis (ALS) before clinical signs of upper motor neuron death. Considering the ALS-associated impairment of astrocytic glutamate uptake, we have characterized the expression and activity of the glutamate transporter isoforms GLT-1a and GLT-1b in the corpus callosum of transgenic rats expressing a mutated form of the human superoxide dismutase 1 (hSOD1(G93A)). We have also studied the effect of peptide histidine isoleucine (PHI), a vasoactive intestinal peptide (VIP)/pituitary adenylate cyclase-activating polypeptide (PACAP) receptor 2 (VPAC(2)) agonist on glutamate transporters both in vivo and in callosal astrocytes. Before the onset of motor symptoms, the expression of both transporter isoforms was correlated with a constitutive activity of caspase-3. This enzyme participates in the down-regulation of GLT-1 in ALS, and here we demonstrated its involvement in the selective degradation of GLT-1a in the white matter. A single stereotactic injection of PHI into the corpus callosum of symptomatic rats decreased caspase-3 activity and promoted GLT-1a expression and uptake activity. Together, with evidence for a reduced expression of prepro-VIP/PHI mRNA in the corpus callosum of transgenic animals, these data shed light on the modulatory role of the VIP/PHI system on the glutamatergic transmission in ALS.
    Document Type:
    Reference
    Product Catalog Number:
    AB1783
    Product Catalog Name:
    Anti-Glutamate Transporter Antibody, Glial
  • RFamide peptide QRFP43 causes obesity with hyperphagia and reduced thermogenesis in mice. 16543370

    QRFP, an RFamide peptide, was recently identified as an endogenous ligand of an orphan G protein-coupled receptor, GPR103. Recent investigation revealed that acute intracerebroventricular (ICV) administration of QRFP26/P518/26RFa, a constitutive part of QRFP43 (43-amino acid-residue form of QRFP), increases appetite in mice, but its role in long-term energy homeostasis remains unknown. In the present study, we examined the effects of chronic administration of QRFP43 on feeding behavior, body weight regulation, and energy expenditure in mice. Intracerebroventricular infusion of QRFP43 for 13 d resulted in a significant increase in body weight and fat mass with hyperphagia. Weight gain and hyperphagia were more evident when mice were fed a moderately high-fat diet. Pair feeding of QRFP43-infused mice did not increase body weight but significantly increased fat mass and plasma concentrations of insulin, leptin, and cholesterol when compared with controls. Moreover, significant decreases in rectal temperature and expression of brown adipose tissue uncoupling protein-1 mRNA were observed in QRFP43-infused ad libitum- and pair-fed mice. The present results suggest that QRFP plays an important role in energy homeostasis by regulating appetite and energy expenditure.
    Document Type:
    Reference
    Product Catalog Number:
    HTS189C